Polyzos NP, Devroey P (2011) A systematic review of randomized trials for the treatment of poor ovarian responders: is there any light at the end of the tunnel? Fertil Steril 96:1058–61.e7
Article
Google Scholar
Oudendijk JF, Yarde F, Eijkemans MJC, Broekmans FJM, Broer SL (2012) The poor responder in IVF: is the prognosis always poor? A systematic review. Hum Reprod Update 18:1–11
Article
CAS
Google Scholar
Drakopoulos P, Bardhi E, Boudry L, Vaiarelli A, Makrigiannakis A, Esteves SC et al (2020) Update on the management of poor ovarian response in IVF: the shift from Bologna criteria to the Poseidon concept. Ther Adv Reprod Heal 14:263349412094148
Article
Google Scholar
Alviggi C, Andersen CY, Buehler K, Conforti A, De Placido G, Esteves SC et al (2016) A new more detailed stratification of low responders to ovarian stimulation: from a poor ovarian response to a low prognosis concept. Fertil Steril 105:1452–1453
Article
Google Scholar
Esteves SC, Alviggi C, Humaidan P, Fischer R, Andersen CY, Conforti A et al (2019) The POSEIDON criteria and its measure of success through the eyes of clinicians and embryologists. Front Endocrinol 10:814 Frontiers Media S.A. Available from: https://pubmed.ncbi.nlm.nih.gov/31824427
Article
Google Scholar
Zamah AM, Hassis ME, Albertolle ME, Williams KE (2015) Proteomic analysis of human follicular fluid from fertile women Clin. Proteomics 12:1–12
Google Scholar
Chen F, Spiessens C, D’Hooghe T, Peeraer K, Carpentier S (2016) Follicular fluid biomarkers for human in vitro fertilization outcome: proof of principle. Proteome 14:1–11. https://doi.org/10.1186/s12953-016-0106-9
Article
CAS
Google Scholar
Wallace M, Cottell E, Gibney MJ, McAuliffe FM, Wingfield M, Brennan L (2012) An investigation into the relationship between the metabolic profile of follicular fluid, oocyte developmental potential, and implantation outcome. Fertil Steril 97:1078–84
Article
CAS
Google Scholar
Julie D, Lamb A, Zamah M, Shen S, McCulloch C, Cedars MI, Rosen MP (2010) Follicular fluid steroid hormone levels are associated with fertilization outcome after intracytoplasmic sperm injection. Fertil Steril 94:952–957
Article
Google Scholar
Barroso G, Barrionuevo M, Rao P, Graham L, Danforth D, Huey S et al (1999) Vascular endothelial growth factor, nitric oxide, and leptin follicular fluid levels correlate negatively with embryo quality in IVF patients. Fertil Steril 72:1024–1026
Article
CAS
Google Scholar
Monteleone P, Giovanni Artini P, Simi G, Casarosa E, Cela V, Genazzani AR (2008) Follicular fluid VEGF levels directly correlate with perifollicular blood flow in normoresponder patients undergoing IVFJ. Assist Reprod Genet 2008(25):183–186
Article
Google Scholar
Gao MZ, Zhao XM, Lin Y, Sun ZG, Zhang HQ (2012) Effects of EG-VEGF, VEGF and TGF-β1 on pregnancy outcome in patients undergoing IVF-ET treatment. J Assist Reprod Genet 29:1091–1096
Article
Google Scholar
Vural F, Vural B, Doğer E, Çakıroğlu Y, Çekmen M (2016) Perifollicular blood flow and its relationship with endometrial vascularity, follicular fluid EG-VEGF, IGF-1, and inhibin-a levels and IVF outcomes. J Assist Reprod Genet 33:1355–1362
Article
Google Scholar
Vignini A, Turi A, Giannubilo SR, Pescosolido D, Scognamiglio P, Zanconi S et al (2008) Follicular fluid nitric oxide (NO) concentrations in stimulated cycles: the relationship to embryo grading. Arch Gynecol Obstet 277:229–232
Article
CAS
Google Scholar
Yalçınkaya E, Cakıroğlu Y, Doğer E, Budak O, Cekmen M, Calışkan E (2013) Effect of follicular fluid NO, MDA and GSH levels on in vitro fertilization outcomes. J Turkish Ger Gynecol Assoc 14:136–141
Article
Google Scholar
Caprio M, Fabbrini E, Isidori AM, Aversa A, Fabbri A (2001) Leptin in reproduction. Trends Endocrinol Metab 12:65–72
Article
CAS
Google Scholar
Al-Aqbi M, Hart R, Ajuogu P, de Touw TV, McFarlane J, Smart N (2020) Follicular fluid leptin as a marker for pregnancy outcomes in women undergoing IVF treatment: a systematic review and meta-analysis. Hum Fertil (Camb) 25:1–10
Google Scholar
Curry TE, Osteen KG (2003) The matrix metalloproteinase system: changes, regulation, and impact throughout the ovarian and uterine reproductive cycle. Endocr Rev 24:428–465
Article
CAS
Google Scholar
Atabakhsh M, Khodadadi I, Amiri I, Mahjub H, Tavilani H (2018) Activity of matrix metalloproteinase 2 and 9 in follicular fluid and seminal plasma and its relation to embryo quality and fertilization rate. J Reprod Infertil 19:140–145
Google Scholar
Ellsworth LR, Balmaceda JP, Schenken RS, Silverman AY, Prihoda TJ, Asch RH (1984) Human chorionic gonadotropin and steroid concentrations in human follicular fluid in relation to follicle size and oocyte maturity in stimulated ovarian cycles. Acta Eur Fertil 15:343–346
CAS
Google Scholar
Cha KY, Barnes RB, Marrs RP, Lobo RA (1986) Correlation of the bioactivity of luteinizing hormone in follicular fluid with oocyte maturity in the spontaneous cycle. Fertil Steril 45:338–341
Article
CAS
Google Scholar
Enien WM, Chantler E, Seif MW, Elstein M (1998) Human ovarian granulosa cells and follicular fluid indices: the relationship to oocyte maturity and fertilization in vitro. Hum Reprod 13:1303–1306
Article
CAS
Google Scholar
Mendoza C, Ruiz-Requena E, Ortega E, Cremades N, Martinez F, Bernabeu R et al (2002) Follicular fluid markers of oocyte developmental potential. Hum Reprod 17:1017–1022
Article
CAS
Google Scholar
Revelli A, Piane LD, Casano S, Molinari E, Massobrio M, Rinaudo P (2009) Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reprod Biol Endocrinol 7:1–13
Article
Google Scholar
Palermo GD, Schlegel PN, Hariprashad JJ, Ergün B, Mielnik A, Zaninovic N et al (1999) Fertilization and pregnancy outcome with intracytoplasmic sperm injection for azoospermic men. Hum Reprod 14:741–748
Article
CAS
Google Scholar
Balaban B, Urman B, Isiklar A, Alatas C, Mercan R, Aksoy S et al (2001) Blastocyst transfer following intracytoplasmic injection of ejaculated, epididymal or testicular spermatozoa. Hum Reprod 16:125–129
Article
CAS
Google Scholar
Vernaeve V, Tournaye H, Osmanagaoglu K, Verheyen G, Van Steirteghem A, Devroey P (2003) Intracytoplasmic sperm injection with testicular spermatozoa is less successful in men with nonobstructive azoospermia than in men with obstructive azoospermia. Fertil Steril 79:529–533
Article
Google Scholar
Loutradi KE, Tarlatzis BC, Goulis DG, Zepiridis L, Pagou T, Chatziioannou E et al (2006) The effects of sperm quality on embryo development after intracytoplasmic sperm injection. J Assist Reprod Genet 23:69–74
Article
Google Scholar
Mazzilli R, Cimadomo D, Vaiarelli A, Capalbo A, Dovere L, Alviggi E et al (2017) Effect of the male factor on the clinical outcome of intracytoplasmic sperm injection combined with preimplantation aneuploidy testing: observational longitudinal cohort study of 1,219 consecutive cycles. Fertil Steril [Internet] 108:961–972.e3. https://doi.org/10.1016/j.fertnstert.2017.08.033 Elsevier Inc
Article
Google Scholar
Hurtado de Mendoza MV, Ten J (2015) Evaluación morfológica de cada estadio de D+0 a D+3. Cuad Embriol clínica criterios ASEBIR valoración morfológica oocitos embriones tempranos y blastocistos humanos. p 9–20
Google Scholar
Gardner DK, Schoolcraft WB (1999) Culture and transfer of human blastocysts. Curr Opin Obstet Gynecol 11:307–311
Article
CAS
Google Scholar
van de Weijer BHM, Mulders JWM, Bos ES, Verhaert PDEM, van den Hooven HW (2003) Compositional analyses of a human menopausal gonadotrophin preparation extracted from urine (menotropin). Identification of some of its major impurities. Reprod Biomed Online 7:547–557. https://doi.org/10.1016/S1472-6483(10)62071-8 Reproductive Healthcare Ltd, Duck End Farm, Dry Drayton, Cambridge CB23 8DB, UK
Article
Google Scholar
Woodward BJ (2020) Textbook of assisted reproduction Textb. Assist. Reprod
Google Scholar
Bosch E, Labarta E, Kolibianakis E, Rosen M, Meldrum D (2016) Regimen of ovarian stimulation affects oocyte and therefore embryo quality. Fertil Steril 105:560–570
Article
CAS
Google Scholar
Smitz J, Andersen AN, Devroey P, Arce J-C (2007) Endocrine profile in serum and follicular fluid differs after ovarian stimulation with HP-hMG or recombinant FSH in IVF patients. Hum Reprod 22:676–687
Article
CAS
Google Scholar
Abu-Musa A, Haahr T, Humaidan P (2020) Novel physiology and definition of poor ovarian response; clinical recommendations. Int J Mol Sci 21:1–20
Article
Google Scholar
Andersen AN, Devroey P, Arce J-C (2006) Clinical outcome following stimulation with highly purified hMG or recombinant FSH in patients undergoing IVF: a randomized assessor-blind controlled trial. Hum Reprod 21:3217–3227
Article
CAS
Google Scholar
Alviggi C, Conforti A, Esteves SC, Andersen CY, Bosch E, Bühler K et al (2018) Recombinant luteinizing hormone supplementation in assisted reproductive technology: a systematic review. Fertil Steril 109:644–664
Article
CAS
Google Scholar
Conforti A, Esteves SC, Di Rella F, Strina I, De Rosa P, Fiorenza A et al (2019) The role of recombinant LH in women with hypo-response to controlled ovarian stimulation: a systematic review and meta-analysis. Reprod Biol Endocrinol 17:18 BioMed Central. Available from: https://pubmed.ncbi.nlm.nih.gov/30728019
Article
Google Scholar
Baker VL, Brown MB, Luke B, Smith GW, Ireland JJ (2015) Gonadotropin dose is negatively correlated with live birth rate: analysis of more than 650,000 assisted reproductive technology cycles. Fertil Steril 104:1145
Article
CAS
Google Scholar
Fauser BCJM, Alper MM, Ledger W, Schoolcraft WB, Zandvliet A, Mannaerts BMJL (2010) Pharmacokinetics and follicular dynamics of corifollitropin alfa versus recombinant FSH during ovarian stimulation for IVF. Reprod BioMed Online 21:593–601
Article
CAS
Google Scholar
Drakopoulos P, Vuong TNL, Ho NAV, Vaiarelli A, Ho MT, Blockeel C et al (2017) Corifollitropin alfa followed by highly purified HMG versus recombinant FSH in young poor ovarian responders: a multicentre randomized controlled clinical trial. Hum Reprod 32:2225–2233
Article
CAS
Google Scholar
Kleiner DE, Stetlerstevenson WG (1994) Quantitative zymography: detection of picogram quantities of gelatinases. Anal Biochem 218:325–329 Available from: http://www.sciencedirect.com/science/article/B6W9V-45PMGFG-7K/2/8aca7f7c8c92a018d6518cd804d2cf1f
Article
CAS
Google Scholar
Huhtaniemi IT, Catt KJ (1981) Differential binding affinities of rat testis luteinizing hormone (lH) receptors for human chorionic gonadotropin, human lH, and ovine LH. Endocrinology 108:1931–1938
Article
CAS
Google Scholar
Casarini L, Riccetti L, De Pascali F, Nicoli A, Tagliavini S, Trenti T et al (2016) Follicle-stimulating hormone potentiates the steroidogenic activity of chorionic gonadotropin and the anti-apoptotic activity of luteinizing hormone in human granulosa-lutein cells in vitro. Mol Cell Endocrinol 422:103–114. https://doi.org/10.1016/j.mce.2015.12.008. Elsevier
Article
CAS
Google Scholar
Kim KH, Oh DS, Jeong JH, Shin BS, Joo BS, Lee KS (2004) Follicular blood flow is a better predictor of the outcome of in vitro fertilization-embryo transfer than follicular fluid vascular endothelial growth factor and nitric oxide concentrations. Fertil Steril 82:586–592
Article
CAS
Google Scholar
Barrionuevo MJ, Schwandt RA, Rao PS, Graham LB, Maisel LP, Yeko TR (2000) Nitric oxide (NO) and interleukin-1β (IL-1β) in follicular fluid and their correlation with fertilization and embryo cleavage. Am J Reprod Immunol 44:359–364
Article
CAS
Google Scholar
Manau D, Balasch J, Jiménez W, Fábregues F, Civico S, Casamitjana R et al (2000) Follicular fluid concentrations of adrenomedullin, vascular endothelial growth factor and nitric oxide in IVF cycles: relationship to ovarian response. Hum Reprod 15:1295–1299
Article
CAS
Google Scholar
Raeeszadeh-Sarmazdeh M, Do LD, Hritz BG (2020) Metalloproteinases and their inhibitors: potential for the development of new therapeutics. Cells 9:1313
Article
CAS
Google Scholar
Eckhard U, Huesgen PF, Schilling O, Bellac CL, Butler GS, Cox JH et al (2016) Active site specificity profiling of the matrix metalloproteinase family: proteomic identification of 4300 cleavage sites by nine MMPs explored with structural and synthetic peptide cleavage analyses. Matrix Biol 49:37–60
Article
CAS
Google Scholar
Yang WJ, Liu FC, Hsieh JS, Chen CH, Hsiao SY, Lin CS (2015) Matrix metalloproteinase 2 level in human follicular fluid is a reliable marker of human oocyte maturation in in vitro fertilization and intracytoplasmic sperm injection cycles. Reprod Biol Endocrinol 13:2–9. https://doi.org/10.1186/s12958-015-0099-8
Article
CAS
Google Scholar