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Abstract 

Indian hedgehog (Ihh) is a member of the developmentally regulated morphogens, the hedgehog gene family. The 
Hh protein family was initially discovered in Drosophila and has since been widely investigated in both Drosophila 
and higher animals. Ihh exhibited a dynamic spatiotemporal expression pattern in the mammalian uterus and ovaries. 
The downstream targets of the Ihh signaling pathway include PTCH-1, SMO, and COUP-TFII. Ihh is a progesterone-
responsive gene that plays an important function in the female reproductive system; conditional ablation results 
in infertility due to failed embryo implantation. The literature addressing Ihh’s functions and ways of action is expand-
ing, as is the number of processes that use it in cell signaling as well as physiology. Even while our grasp of the path 
has expanded tremendously, we still have many gaps in our knowledge. This review will address the discovery, evolu-
tion, mechanisms, and manifestations of Ihh especially in mammalian reproduction.
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Background
During implantation, the embryo binds to the recep-
tive uterine epithelium, resulting in pregnancy [1]. Later, 
the embryo invades the underlying endometrial stroma, 
where the stromal cells are converted into decidual cells 
that promote embryonic growth and survival. The ster-
oid hormone progesterone (P) is important during preg-
nancy establishment and maintenance because it has a 
significant impact on endometrial functions. In preim-
plantation phase, P acts in concert with 17β estradiol (E) 
to orchestrate changes in the uterine epithelium render-
ing it competent for embryo implantation [2]. In mice, 
ovarian E on day 1 and day 2 of pregnancy stimulates 
proliferation of uterine epithelium. During this E-domi-
nated phase, the epithelium has a unique columnar phe-
notype and makes cell–cell interactions via intracellular 

tight and adherens junctions. The uterine epithelium 
stops proliferating and begins to differentiate in response 
to increased P levels, beginning in the middle of day 2 
of pregnancy. Upon differentiation, the luminal epithe-
lium undergoes structural remodeling that includes the 
breakdown of tight and adherens junctions, allowing for 
embryo attachment and invasion [3]. On day 4 of preg-
nancy, as the embryo adheres to the luminal epithelium, 
the surrounding fibroblastic stromal cells differentiate 
into distinct secretory decidual cells. P is the primary 
driver of this differentiation process, termed decidu-
alization, which is a prerequisite to successful implanta-
tion [2]. There are numerous genes which elucidate the 
molecular mechanisms by which P regulates the early 
steps leading to the acquisition of uterine receptivity for 
implantation and successful establishment of pregnancy.

Ihh is one of those P-regulated genes which is 
expressed during the time of implantation and has role 
in uterine receptivity and establishment of a successful 
pregnancy [4]. Ihh signaling has been shown to be impor-
tant for the development of multiple tissues including the 
limbs, cerebellum, bone cartilage, gonads, and heart [5]. 
Deregulation of hedgehog signaling has been implicated 
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in cancers, such as basal cell carcinoma, medulloblas-
toma, pancreatic cancer, prostate cancer, and lung cancer 
[3]. Ihh is expressed in the mouse uterine luminal epi-
thelium in the preimplantation period, with its highest 
expression on day 3 (D3), whereas its downstream tar-
get genes, patched 1 (PTCH-I), smoothened (SMO), and 
chicken ovalbumin upstream promoter transcription fac-
tor II (COUP-TFII) are expressed in the uterine stroma, 
with their highest expression on D4 during the “window 
of receptivity” [6]. In endometrium, Ihh expression sig-
nificantly decreases during the transition from the early 
to the mid-secretory phase, which is associated with a 
downregulation of cellular division.

The discovery of hedgehog
The embryonic development is organized by a small set 
of secreted signaling molecules that together mediate 
the inductive interplay between cell populations that 
carve the form of an animal. Among these signaling mol-
ecules, the members of the hedgehog (Hh) protein fam-
ily are the prominent one [7]. The Hh gene family is a 
member of the developmentally regulated morphogens. 
In the 1970s, the understanding of how a very basic egg 
can give birth to a complicated segmented body plan was 
a major topic in developmental biology. Using a satura-
tion mutagenesis technique, Christiane Nusslein-Volhard 
and Eric Wieschaus discovered a set of genes involved in 
the development of body segmentation in the late 1970s. 
These mutations control the development of the seg-
mented anterior–posterior body axis of the fly. For their 
research on genetic alterations in Drosophila embryogen-
esis, Christiane Nusslein-Volhard, Eric Wieschaus, and 
Edward B. Lewis received the 1995 Nobel Prize [8].

The hedgehog (hh) gene family is named after a mutant 
phenotype that occurs when Drosophila embryos miss-
ing hedgehog (hh) gene activity are covered with denti-
cles, which are tiny, pointed projections that resemble 
hedgehog spikes. Dr. Clifford J. Tabin, a developmental 
biologist at Harvard Medical School, advocated nam-
ing each newly found gene after a certain hedgehog spe-
cies. This method worked for the first two genes, i.e., the 
Indian hedgehog (Ihh) and desert hedgehog (Dhh). How-
ever, Dr. Robert Riddle, a postdoctoral fellow in Tabin’s 
lab, disobeyed the system and named the third homolog 
sonic hedgehog (Shh), after the protagonist of a Sega 
video game. This was because he had uncovered the most 
fascinating hedgehog gene yet known [9] (Table 1).

Hh genes have been found in various invertebrate spe-
cies, including the leech and sea urchin, as well as the 
cephalochordate amphioxus [7]. The nematode worm 
Caenorhabditis elegans lacks Hh homologs but does have 
numerous genes that encode proteins related to the Hh 
downstream target patched (PTCH) [10]. Vertebrate 

hedgehog genes were discovered in 1993 as a result of a 
coordinated effort between three groups (fish, chick, and 
mouse) [11]. The following year, Chang et  al. published 
an additional report on hh homologs. These prelimi-
nary results contain a number of surprises. Unlike the 
drosophila, which has a single hh gene, vertebrate spe-
cies have many related genes. Three hh genes have been 
found in mice: Shh, Dhh, and Ihh. Dhh is the most closely 
linked Hh homology to Drosophila, but Shh and Ihh are 
more similar to one another [9]. The phylogenetic tree 
(Fig.  1) depicts the evolutionary connections between 
various homologs.

All Hh family homologs are involved in actions that are 
critical to the development, patterning, and morphogen-
esis of many different areas within the body plans of ver-
tebrates, insects, and most likely other invertebrates. In 
some cases, Hh signals function as morphogens, inducing 
diverse cell fates within a target field in a dose-dependent 
manner; in others, they serve as mitogens, regulating cell 
proliferation or initiating factors, determining the shape 
of a growing organ (Table  2). Furthermore, in recent 
years, Hh proteins have been implicated in a wide range 
of processes in the developing embryo. Indeed, a Hh sig-
nal influences almost every aspect of a vertebrates’ body 
layout [12].

The structure of Ihh protein
Ihh is a 45.251-kDa protein yielded by signal peptide 
cleavage between Gly65 and Cys39. The protein has a 
highly conserved core region of around 411 amino 
acids. The Ihh protein is composed of two domains: 
an amino-terminal domain (HhN) called the Hedge 
domain and a carboxy-terminal autocatalytic domain 
(HhC) called the Hog domain [23]. The HhN domain 
has the biological signal activity, whereas HhC domain 
deals with cholesterol moiety. The HhC domain cleaves 
Hh into two parts in an intramolecular reaction and 
adds a cholesterol moiety to HhN. The Hog domain is 
again separated into two regions; the first two-thirds 
shows resemblance with self-splicing inteins, and the 
module has been named Hint, whereas the carboxy-
terminal third binds cholesterol in Hh protein and has 

Table 1  History of the hedgehog family

Year Events References

1970 Discovery of Hh gene in Drosophila [8]

1993 First vertebrate Hh gene reported [11]

1994 Nomenclature of Hh homologies [9]

1995 Nobel Prize for research on genetic altera-
tions in Drosophila embryogenesis

[8]
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been named as sterol-recognition region (SRR). The 
tip of the whole structure consists of the signal peptide 
sequence for protein export (SS) [24] (Fig. 2).

Terminology

•	 Hedge domain: Comprehensive term for the amino-
terminal domain of Hh proteins

Fig. 1  Phylogenetic relationships between members of the Hh protein family from various species

Table 2  Functions of the hedgehog genes in vertebrates

Cell type/organ Ligand Nature of role References

1. Blood cells Ihh Activation of hematopoiesis [13]

2. Bone and cartilage Ihh Differentiation of endochondral skeleton [14]

3. Gonads Dhh Maturation of testes, Sertoli-Leydig cell interactions [15]

4. Heart Ihh Cardiac morphogenesis [16]

5. Limbs Shh Outgrowth of limb bud [17]

6. Lungs Shh Branching epithelium [18]

7. Muscle Shh Regulation smooth muscle differentiation [19]

8. Pituitary Shh Cell type determination [20]

9. Pancreas Shh Insulin production [21]

10. Eye Dhh Retinal precursor proliferation [22]

Fig. 2  Structural features of Ihh protein, adapted from [23]
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•	 Hog domain: Comprehensive term for the carboxy-
terminal of Hh proteins. The Hint and SRR region 
together comprises the Hog domain.

•	 Hint module: A autoproteolytic module found in 
hedgehog protein and self-splicing inteins

•	 SRR module: The cholesterol-binding site of HhC.

The signaling pathway
Indian hedgehog (Ihh) is a known component of the 
Hh signaling pathway and a progesterone receptor tar-
get gene [25]. Ihh signaling begins in the uterine epi-
thelium compartment and progresses from epithelial 
to stromal cells within the uterus. Patched-1 (PTCH 
1) is the transmembrane receptor responsible for sig-
nal transmission [26]. The major function of PTCH-1 
is to inhibit smoothened (SMO) activation, which is 
another transmembrane receptor. The SMO is acti-
vated as soon as the Hh ligand attaches to PTCH-1, 
stopping its attempt to suppress it. The chicken oval-
bumin upstream promoter-transcription factor II 
(COUP-TFII) is a significant factor that is activated 
when SMO is activated [27]. After the uterine stro-
ma’s COUP-TFII is activated, the downstream target 
receives a signal that establishes the Ihh-COUP-TFII 
axis inside the two uterine compartments. During the 
postimplantation phase, COUP-TFII is a crucial effec-
tor of decidualization and pregnancy maintenance [28] 
(Fig. 3).

COUP‑TFII
COUP-TFII is a member of nuclear receptor super-
family and has been identified as a crucial regulator in 
proliferation, decidualization, cell survival, and proges-
terone sensitivity. Research have showed that ablation in 
COUP-TFII results in embryonic lethality due to defects 
in vascular development [29]. Mice heterozygous for 
the ablation of COUP-TFII show reproduction defects 
including the inability of the uterus to undergo the events 
required to support a successful pregnancy [30]. There-
fore, even the loss of one allele of COUP-TFII can impair 
reproduction. On day 3 and day 4 of pregnancy, Ihh is 
expressed in uterine epithelium, followed by COUP-TFII 
expression in the stromal cells [25]. The expression of 
COUP-TFII is just prior to the window of receptivity giv-
ing further support for a function of this signaling axis in 
preparing the uterus for embryo implantation.

The Ihh‑COUP‑TFII axis
The establishment of Ihh-COUP-TFII axis within the 
uterus is very crucial for both implantation and decidu-
alization. The absence of this axis results in embryonic 
inability for attachment to the uterine lumen leading to 
implantation failure [31]. This axis acts concurrently 
between both uterine compartments to carry out suc-
cessful progesterone receptor (PR) function in early 
pregnancy. Thus, this axis plays a very critical role for the 
proper development and preparation of the uterus for the 
implanting embryo.

Fig. 3  The progesterone-regulated Ihh signaling model
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In human endometrium, the Ihh was found to be 
expressed at the secretory phase [32]. Increased level of 
Ihh protein and mRNA levels during proliferative phase 
upon treatment with selective progesterone receptor 
modulator (SPRM) determines the dependency of the 
gene on PR. Another research work demonstrated that 
Ihh expression is dysregulated in patients with endome-
triosis [33], while COUP-TFII was found to be expelled 
within endometriotic and eutopic endometrial stromal 
cells [34]. Consequently, it has been observed that the 
Ihh-COUP-TFII axis, which was shown to be significant 
in the murin system, is retained in humans as well.

Expression in uterus
Progesterone (P) act through its cognate receptors plays 
crucial role in regulating uterine processes essential for 
embryo implantation. The progesterone receptor (PR) 
signals are critical regulators for crosstalk between the 
epithelial and stromal compartments of the uterus. In 
mouse, uterine Ihh was shown to be induced by PR [35]. 
Ihh expression is restricted to the epithelium, whereas 
its established effectors, PTCH-1 and COUP-TFII, are 
coordinately expressed in the endometrial stroma [25]. 
Ihh signaling pathway underlies inter-compartmental cel-
lular communication that is obligatory for the establish-
ment and maintenance of the maternofetal interface in 
the uterus [4].

In uterus during preimplantation period, the uterine 
stroma undergoes P-mediated increase in cell prolifera-
tion and vascularization, and this becomes the prepara-
tory stage for the decidual cell reaction [36]. Ihh is a very 
decisive factor for cellular proliferation and vasculariza-
tion, which are two distinct cellular responses that pre-
pare the uterine stroma for the induction of the decidual 
response. Research on molecular effects of Ihh ablation 
showed that the expression of PR in uterus remains unaf-
fected, but the expression of PTCH-1 and COUP-TFII 
significantly decreases [37]. Ihh ablation does not have 
affect on overall P signaling but does regulate a crucial 
subset of genes that are necessary for uterine function 
[38].

In uterus, for an appropriate cellular response, the 
communication between the epithelial and stromal com-
partments is mandatory. Ihh is a pathway which act as a 
molecular bridge between the two uterine compartments 
through which P projects its effects on cell growth, differ-
entiation, and angiogenesis. Ihh has evolved specifically 
as a uterine mediator of the P signal. Ihh is not induced 
by P in other progestin target-tissues like ovary, pituitary, 
or mammary gland [39]. Ihh pathway is the cardinal sign-
aling cascade downstream of PR, and that other P uter-
ine molecular targets fail to act as alternative pathways. 

Moreover, uterine Ihh signaling pathway spans the epi-
thelial-stromal cleave.

IHH expression in ovary
In the postnatal mammalian ovary, androgens are pri-
marily produced by the theca cells. These theca cells sub-
sequently differentiate into granulosa cells which serves 
as the major source of estradiol 17β [40]. During the 
postnatal period, follicle recruitment and development 
commence from the pool of primordial follicles, align-
ing with the initiation of the female reproductive cycle 
and ovulation. This process is regulated by the feedback 
effects of LH and FSH from the pituitary, leading to ster-
oidogenesis, specifically the production of estradiol-17β 
by granulosa cells of the Graafian follicle and progester-
one by lutein cells of the corpus luteum [41].

During the adult reproductive life, the recruitment of 
follicles from the primordial pool is an uninterrupted 
process which led to the formation of primary folli-
cles and sets the basis for subsequent follicle develop-
ment [42]. In a healthy developing follicle, the growth 
of the oocyte and the proliferation and differentiation 
of the somatic granulosa and thecal cell compartments 
are highly coordinated events. This demands inter-
cellular communication between these cell types and 
compartments.

The mammalian ovary acts as a novel site of active Ihh 
signaling. Granulosa cells of growing follicles serve as a 
source of Ihh signaling [43]. Initiation of follicular growth 
in ovary can be defined as the transition of a nongrowing 
primordial follicle to a primary follicle. During this tran-
sition, granulosa cells increase in number and change its 
morphology from a squamous to a cuboidal cell. Granu-
losa cells of primordial follicles do not express Ihh [44]. 
Ihh mRNAs were first detected when granulosa cells take 
up the cuboidal morphology and attain the primary folli-
cular stage. Induced expression of Ihh downstream target 
gene PTCH-1 is detected in mesenchymal cells adjacent 
to granulosa cells [45]. Ihh signaling does not play part 
in the initiation of follicle growth but rather starts to act 
early after the transition from the primordial to the pri-
mary follicle stage. So we can deduce that expression of 
Ihh mRNAs initiates in granulosa cells at the primary 
follicle stage, while the induced expression of hedge-
hog target gene PTCH-1 was found in the surrounding 
pre-theca cell compartment. The thecal cell compart-
ment remains a target of Ihh signaling throughout folli-
cle development manifesting induced expression of the 
downstream hedgehog target genes [35]. The important 
role of Ihh signaling in ovary is to communicate between 
granulosa cells and developing theca cells (Endocrinology 
146: 3558–3566, 2005) (Fig. 4).
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Cross‑linking of Ihh and other transcriptional 
factors during early gestational period in mice
Ihh is critical for proper adult uterine function since 
conditional ablation of Ihh in the uterus causes infertil-
ity in mice due to poor embryo attachment and decidu-
alization. Microarray study of the Ihh target genes at 
their greatest expression level revealed 863 Ihh-regulated 
genes. Ihh influences embryo implantation by regulating 
stromal cell proliferation, inhibiting epithelial E signal-
ing, and triggering steps required for effective embryo 
implantation [46]. Leukemia inhibitory factor (LIF) is a 
cytokine of the interleukin-6 family and is a major media-
tor for action of E. LIF is secreted mainly from the uter-
ine gland by nidatory E on the fourth day of pregnancy 
and is expressed in the subluminal stroma at the implan-
tation site [47]. Secreted LIF activates signal transducer 
and activator of transcription 3 (STAT3) via heterodi-
merization of LIF receptor. LIF can be substituted for 
E action in terminating artificial delayed implantation 
and reinitiation of embryo implantation in mice. Both 
of these two factors, i.e., LIF and Ihh, are expressed in 
uterine epithelium during implantation [47]. Uterine Ihh 
mRNA was not detectable on day 1, but rose on days 3–4, 
and then reduced on day 5 of pregnancy. The expres-
sion of PR mRNA and protein in the luminal epithelium 
matched that of Ihh, but unlike the epithelium, progester-
one receptor levels increased in the stroma after implan-
tation [8]. However, the LIF mRNA in mice did exhibit 
the same expression patterns like Ihh and PR mRNAs. 

This suggests that LIF might have a cross-link, regulating 
the expression of Ihh and progesterone receptor mRNA 
in the luminal epithelium. Expression of Ihh mRNA 
increased after LIF injection in wild-type mice. Admin-
istration of E induces LIF mRNA, but not Ihh mRNA 
in ovariectomized mice without P treatment. This indi-
cates that P is required for upregulation of Ihh mRNA 
mediated by LIF. The peak expression of PR mRNA 
was preceded by that of Ihh mRNA after LIF injection. 
LIF increases Ihh mRNA and other P-related factors by 
upregulation of PR in luminal epithelium. Uterine LIF is 
indued by E surge on day 4 which results in high expres-
sion of Ihh mRNA on day 4 [48]. These findings imply 
that LIF has an influence on upregulating Ihh levels.

In another study, it has been reported that coadminis-
tration of LIF and P leads to a synergistic stimulation of 
Ihh expression in luminal epithelium during early preg-
nancy. The group of Demayo and colleagues had shown 
that Ihh produced by the luminal epithelium acts on its 
receptor PTCH1 on the stromal cells to induce COUP-
TFII, an essential factor for decidualization. These find-
ings provide a plausible mechanistic pathway linking 
glandular production of LIF to its paracrine action in the 
luminal epithelium to induce Ihh, which then acts on the 
stroma to promote decidualization. LIF exhibits a bipha-
sic pattern of expression in the preimplantation uterus 
[49]. During the first phase, glandular LIF production 
is high at proestrus/estrus near the time of ovulation in 
response to the preovulatory surge of E and continues on 

Fig. 4  Ihh signaling in granulosa cell-induced expression of PTCH-1 in theca cells
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day 1 and day 2 of pregnancy. The LIF level then declines 
on day 3. The second phase involves its rise again on 
day 4 concomitant with the transient surge of nidatory 
E [50]. During the entire preimplantation phase span-
ning days 1–4 of pregnancy, the LIF receptor is constitu-
tively expressed in uterine luminal epithelium, consistent 
with the view that this tissue is the primary target of LIF 
action during this preparatory period [51]. Comparison 
of the uterine expression profiles of LIF and LIF receptor 
with that of Ihh during days 1–3 of pregnancy indicated 
that the first phase of LIF expression and signaling tem-
porally overlaps with the induction of Ihh, which peaks 
during days 2–3 of pregnancy [25]. The expression of Ihh 
drops gradually from day 5 onwards when the second 
surge of glandular LIF expression occurs [25]. Based on 
these results, it has been postulated that the first phase 
of LIF expression influences the expression of Ihh in pre-
implantation uterus. Ihh then acts on the stromal cells 
via the PTCH-1 receptor to set in motion a cascade of 
pathways that prepare the uterus to fully respond to the 
decidual stimulation provided by the attachment of the 
embryo to the receptive uterus at day 4.5. The second 
peak of LIF expression occurs prior to implantation and 
plays an important role in inducing signaling pathways 
that modulate uterine luminal epithelial junctional com-
plexes, thereby facilitating embryo attachment [51].

Signaling by LIF is initiated when it binds to the LIF 
receptors on the target cell. The LIF receptor is known 
to signal through distinct downstream pathways: JAK-
STAT3 or Ras/ERK or AKT [52]. Studies have shown 
that a transient surge of LIF on day 5 of gestation induces 
embryo attachment by activating the JAK-STAT3 path-
way [53]. The induction of Ihh in response to LIF sign-
aling remained unaffected in uteri lacking epithelial 
STAT3; instead, the active form of ERK1/2 is present 
in the luminal epithelium on days 2–4 of gestation, and 
they exhibit a similar temporal expression pattern as that 
reported for Ihh. Collectively, these findings are consist-
ent with the concept that the first phase of LIF expres-
sion activates the ERK1/2 pathway in luminal epithelium 
to induce Ihh expression in the preimplantation uterus, 
which then acts on the stromal cells to promote decid-
ualization. The second surge of LIF on day 4 activates 
JAK-STAT3 pathway in the luminal epithelial cells and 
regulates a distinct set off genes that promote epithelial 
remodeling, uterine receptivity, and embryo attachment 
[54].

Conditional deletion of Ihh in the uterus caused 
infertility due to a flaw in embryo implantation [37]. 
In mice lacking Ihh (Ihhd/d), the epithelium failed to 
reach the receptive condition. Ihhd/d microarray analy-
sis revealed upregulation of several E-regulated genes, 
including mucin 1 (Muc1), lactotransferrin (Ltf ), and 

wingless-type MMTV integration site (WNT) family 
member 4 (Wnt4), implying that Ihh may be involved 
in regulating estrogen receptor (ER) activity during the 
peri-implantation period. Mice with COUP-TFII uterine 
deletion exhibit elevated expression of epithelial ERα and 
its targets, including Ltf and Muc1, leading to reduced 
uterine receptivity and implantation failure [31]. The PR-
IHH-COUP-TFII axis is thus critical during implantation 
because it regulates epithelial function.

Another research found that Ihh depletion in the uter-
ine epithelium is related with altered gene expression in 
the stroma, indicating that Ihh modulates stromal func-
tion through paracrine pathways [31]. Ihhd/d mice did 
not commence the P-induced stromal cell proliferation 
that occurs before decidualization in the peri-implanta-
tion period [37]. The cell cycle regulatory factor CCND1 
and the minichromosome maintenance family mem-
ber MCM3, both of which are required for stromal cell 
proliferation, were not detected in Ihh-null uteri [46]. 
Further work demonstrated that Ihh deletion reduces 
epidermal growth factor receptor (EGFR) expression in 
stromal cells, identifying it as another downstream target 
of the Ihh signaling cascade. Microarray analysis revealed 
that Ihh regulates other members of the EGF receptor 
family, such as Erbb/Her2, Erbb3/Her3, and Erbb4/Her4 
[46]. These findings suggested that Ihh, via modulating 
downstream EGF-EGFR signaling, may play a significant 
role in stromal proliferation and differentiation. Thus, 
P-induced Ihh activates several signaling pathways in 
epithelial and stromal compartments, regulating uterine 
receptivity and decidualization during implantation.

Conclusion
The Ihh signaling system is a crucial regulator of meta-
zoan development that was first identified by its involve-
ment in patterning the Drosophila larval epidermis. The 
spatially limited production of Ihh ensures that the Dros-
ophila Wnt1 orthologue remains wingless in neighbor-
ing cells. Ihh’s significance in developmental processes 
has served as a model for classical morphogens. During 
the uterine remodeling stage, the Ihh gene was expressed 
in the mouse uterus (Table 3). It works as a facilitator of 
the endometrium’s P4-dependent activity and is criti-
cal in initiating uterine reconstruction in preparation 
for embryo implantation, not just in rodents but also in 
other mammalian species.

Dysfunction of Ihh pathway underlies a number of 
human developmental abnormalities and diseases, mak-
ing it a crucial therapeutic target. Studies from many 
laboratories reveal activation of this pathway in a variety 
of human cancer which includes basal cell carcinomas 
(BCCs), medulloblastomas, leukemia, gastrointestinal, 
lung, ovarian, breast, and prostate cancers. Targeted 
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inhibition of hedgehog signaling may be effective in treat-
ment and prevention of human cancer. Specific signaling 
antagonists for the Ihh sinaling pathway were discovered. 
Optimized use of these antagonists will make the novel 
cancer therapeutics feasible.

Ihh signaling has emerged as one of the leading path-
ways regulating cell fate specification, differentiation, 
and tissue homeostasis. The record of processes involv-
ing in Ihh pathway continues to grow as well as its func-
tions and mechanism of action. Despite having enormous 
knowledge about the pathway, there are still many areas 
where understanding remains incomplete. Major unre-
solved questions concern how Ihh is mediating PTCH-1 
and how PTCH-1 regulates Smo activity, and the signifi-
cance of the dynamic distributions of pathway compo-
nents and the release and transport of Ihh proteins are 
physiologically important. Future biochemical and struc-
tural analysis will help to resolve these puzzles.
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Table 3  Importance of the Ihh gene

Function Description References

1. Regulation of endometrial function Involved in the regulation of endometrial epithelial cell proliferation and differentiation. It 
modulates the receptivity of the endometrium to embryo implantation

[25]

2. Establishment of pregnancy COUP-TFII and IHH are part of a coordinated signaling network that ensures that the endo-
metrium is appropriately prepared for embryo implantation, and any disruption in this 
crosstalk can lead to implantation failure and early pregnancy loss

[31]

3. Skeletal development Functions through Ihh signaling pathway which involves interaction with its receptors, 
patched 1 (PTCH 1), and the downstream transcriptions Gli 1 and Gli2. This pathway coordi-
nates chondrocyte proliferation, differentiation, and endochondral ossification

[55]

4. Gonadal development Regulates the development of ovarian follicles. Ihh influences the differentiation and func-
tion of granulosa cells, which are essential for folliculogenesis and oocyte maturation

[56]

5. Ovarian follicle development Affects the transition of ovarian follicle through various stages of development, influencing 
the selection and maturation of dominant follicles and the timing of ovulation

[57]

6. Embryonic development Controls the development of structures such as limbs, kidneys, and central nervous system 
by influencing cell fate decisions and tissue morphogenesis

[58]

7. Decidualization of stromal cells PR (progesterone receptors) are essential for decidualization, and Ihh signaling modu-
lates PR expression. Another factor GATA2 is important for regulation of genes necessary 
for decidualization and interact with Ihh signaling

[59]

8. Formation and function of uterine glands Ihh interact with FOXA2 to regulate the development of the development of uterine glands 
and their functional maturation

[60]

9. Trophoblast differentiation GATA3 is crucial for trophoblast lineage specification and differentiation into trophoblast 
giant cells. Ihh modulate GATA3 expression and activity which in turn impacts the differen-
tiation process and overall development of the placenta

[61]

10. Support early pregnancy Ihh signaling helps regulate HAND2 expression in stromal cells, which in turn inhibits exces-
sive stromal proliferation and promotes decidualization for supporting early pregnancy

[62]
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