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Abstract 

Accurate prediction of oocyte maturation is a critical determinant of success in in vitro fertilization‑embryo transfer 
(IVF‑ET) procedures. This review provides a comprehensive analysis of the various predictive approaches employed 
to assess oocyte maturity, including single indicators, combined indicators, and predictive models. Factors such 
as ovarian reserve, patient characteristics, and controlled ovarian hyperstimulation (COH) strategies can significantly 
influence oocyte maturation rates. Single indicators, including hormone levels, ultrasound parameters, and clinical 
parameters, have been extensively studied. However, their predictive power may be limited when used in isola‑
tion. Combined indicators, integrating multiple parameters, have demonstrated improved predictive performance 
compared to single indicators. Additionally, predictive models and algorithms, such as machine learning and deep 
learning models, have emerged as promising tools for assessing oocyte maturity. These models leverage advanced 
statistical and computational methods to analyze complex datasets and identify patterns that can predict oocyte 
maturation rates with potentially higher accuracy. Despite these advancements, several gaps and limitations persist, 
including limited generalizability, lack of standardization, insufficient external validation, and the need to incorpo‑
rate patient‑specific factors and emerging technologies. The review highlights potential areas for further research, 
such as multicenter collaborative studies, integration of advanced omics technologies, development of personalized 
prediction models, and investigation of trigger time optimization strategies. Recommendations for clinical practice 
include utilizing a combination of indicators, adopting validated predictive models, tailoring approaches based 
on individual patient characteristics, continuous monitoring and adjustment, and fostering multidisciplinary col‑
laboration. Accurate prediction of oocyte maturation holds profound implications for improving the success rates 
of IVF‑ET and enhancing the chances of achieving a healthy pregnancy. Continued research, innovative approaches, 
and the implementation of evidence‑based practices are essential to optimize assisted reproductive outcomes.
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Introduction
In vitro fertilization-embryo transfer (IVF-ET) has revo-
lutionized the field of assisted reproductive technology, 
offering hope to countless individuals and couples strug-
gling with infertility [1]. This intricate process involves 
the retrieval of mature oocytes from the ovaries, followed 
by their fertilization with sperm in a laboratory setting, 
and the subsequent transfer of the resulting embryos into 
the uterus. As a crucial step in this period, oocyte matu-
ration plays a pivotal role in determining the success of 
IVF-ET [1–3].

Despite the remarkable advancements in IVF-ET tech-
niques, clinicians and patients alike still face significant 
challenges and risks. One of the most concerning issues is 
the failure to retrieve eggs or a low percentage of mature 
oocytes among the retrieved eggs [4]. The incidence 
of failed oocyte retrieval in IVF cycles is approximately 
1–2%, which may be attributed to various factors, includ-
ing empty follicles, technical difficulties, early ovulation, 
or incorrect use of human chorionic gonadotropin (hCG) 
injection [5]. Moreover, oocyte quality directly influ-
ences the outcome of IVF-ET, as immature or abnormal 
oocytes may compromise fertilization, embryo develop-
ment, and, ultimately, the chances of a successful preg-
nancy [6].

Accurate prediction of oocyte maturity is therefore the 
first and most crucial step for clinicians in the IVF-ET 
process. Accompanied by controlled ovarian hyperstim-
ulation (COH), the selection of the appropriate trigger 
time for oocyte maturation is also a critical factor in 
achieving a higher rate of mature oocytes [7]. Numerous 
studies have focused on developing predictive methods 
for oocyte maturity by utilizing hormone levels, ultra-
sound parameters, or other clinical indicators [7–9]. 
However, the predictive value of these individual indi-
cators can vary significantly, highlighting the need for a 
more comprehensive and integrated approach.

We aimed to provide a comprehensive analysis of the 
various predictive indicators, models, and strategies 
employed to assess oocyte maturation during IVF-ET. 
We also explored single indicators, combined indicators, 
and predictive models used during COH, with a par-
ticular emphasis on the period before and after the hCG 
trigger. By critically evaluating the existing literature and 
methodologies, we intended to identify the most effective 
approaches for optimizing oocyte maturation prediction, 
ultimately improving the success rates of IVF-ET, and 
enhancing the chances of achieving a healthy pregnancy.

Ovarian reserve and patient characteristics
The ovarian reserve, which refers to both the quantity 
and quality of remaining oocytes within the ovaries, 
plays a critical role in determining the success of oocyte 

maturation during IVF-ET. Both normal and abnormal 
ovarian reserve can influence the outcome of the pro-
cedure. In individuals with a normal ovarian reserve, 
ovaries typically respond favorably to COH, resulting 
in the recruitment of multiple follicles and the produc-
tion of mature oocytes [10]. However, variations in ovar-
ian reserve and patient characteristics can still influence 
oocyte maturation even within this group [11]. Con-
versely, patients with abnormal ovarian reserves, such as 
diminished ovarian reserve (DOR) or polycystic ovarian 
syndrome (PCOS), face distinct challenges in achieving 
optimal oocyte maturation [12, 13]. In cases of DOR, 
the ovarian response to COH may be suboptimal, lead-
ing to fewer retrieved oocytes and an increased risk of 
encountering immature oocytes. Nevertheless, excessive 
follicular recruitment may occur, potentially compromis-
ing oocyte quality and maturity in PCOS patients [14]. 
Patient characteristics, encompassing age, body mass 
index (BMI), hormonal profiles, and medical history, also 
exert significant influence on oocyte maturation dur-
ing IVF-ET (Table  1) [15–22]. Advanced maternal age 
is a well-established risk factor for poor IVF outcomes, 
including reduced oocyte maturity. Scantamburlo et  al. 
[23] found that older age was associated with a lower 
number of mature oocytes retrieved and poorer IVF 
outcomes, including higher miscarriage rates. Several 
studies have investigated the impact of BMI on oocyte 
maturation and IVF outcomes [17, 24–27]. Amiri et  al. 
[28] reported that higher BMI was linked to poorer 
oocyte quality and lower maturation rates, potentially 
because of hormonal imbalances and other metabolic 
factors associated with obesity.

Predictive indicators and methods
Single indicators
Studies have explored the use of various single indica-
tors to predict oocyte maturation during IVF-ET, which 
can be broadly categorized into hormone levels, ultra-
sound parameters, and other clinical parameters. The 
assessment of female hormone levels, such as estra-
diol (E2), progesterone, and anti-Müllerian hormone 
(AMH), has been extensively studied as a potential 
predictor of oocyte maturation. Taheri and Vaughan 
have demonstrated a positive correlation between 
higher estradiol levels on the day of the human cho-
rionic gonadotropin (hCG) trigger and an increased 
number of mature oocytes retrieved [29, 30]. The estra-
diol/follicle ratio has been proposed as a promising 
indicator, with the ratio between 250 and 750 pmol/L/
oocyte associated with improved oocyte maturation 
rates and IVF outcomes acrossing the different protocol 
[30]. Yang et al. [31] demonstrated that patients on the 
flare GnRH-agonist protocol with elevated estradiol to 
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oocyte ratios (EOR) had lower pregnancy and implan-
tation rates. In contrast, Orvieto et  al. [32] found that 
while EOR does not predict the success of a GnRH-
agonist protocol, an EOR range of 100–200  pg/mL in 
patients on a GnRH-antagonist protocol provides the 
best chance for a positive outcome.

While progesterone is essential for successful implanta-
tion and pregnancy maintenance, Huang et al. [33] sug-
gested that elevated progesterone levels before the hCG 
trigger have been linked to suboptimal oocyte matu-
rity and compromised IVF outcomes, and the cutoff of 
progesterone was 2.0  ng/ml for patients receiving long 
GnRH agonist protocol. High progesterone levels before 
the hCG trigger can interfere with the normal progres-
sion of oocyte nuclear and cytoplasmic maturation, lead-
ing to the production of immature or dysmature oocytes. 
Consequently, elevated progesterone levels during this 
critical period have been associated with lower propor-
tions of mature oocytes retrieved, lower fertilization 
rates, and lower-quality embryos, ultimately compromis-
ing IVF success rates. Woo et al. [34] and Zhao et al. [35] 
have reported a negative correlation between elevated 
progesterone levels on the day of the hCG trigger and 
oocyte maturation rates, further supporting the potential 
adverse effects of premature progesterone elevation on 
oocyte quality. However, the threshold for defining ele-
vated progesterone levels and its impact on oocyte matu-
rity remains a subject of ongoing research [33]. AMH 
has emerged as a valuable marker of ovarian reserve 
and oocyte quality, which is produced by the granulosa 
cells of preantral and small antral follicles. Studies have 
demonstrated a positive association between higher 
AMH levels and an increased number of mature oocytes 
retrieved [16, 36–38]. Moreover, lower AMH levels have 
been associated with a reduced likelihood of live birth 
following IVF-ET [39, 40].

Ultrasound parameters, such as follicle size and 
endometrial thickness, have also been investigated 
as potential predictors of oocyte maturation [41, 42]. 
Silverberg et  al. [43] reported that larger follicle size 
on the day of the hCG trigger was associated with a 
higher proportion of mature oocytes retrieved. Simi-
larly, Correia et al. [26] found that incorporating follicle 
size into a predictive model improved the accuracy of 
determining the optimal timing for final oocyte matu-
ration. Additionally, endometrial thickness has been 
explored as a potential predictor of oocyte maturity 
and IVF outcomes. Lv et  al. [44] demonstrated that 
optimal endometrial thickness on the day of the hCG 
trigger was correlated with higher oocyte maturity 
rates and improved live birth rates following IVF-ET. 
However, the optimal endometrial thickness cut-off 
values may vary across different patient populations 
and require further investigation [45]. The ovarian 
response to COH has been studied as a potential indi-
cator of oocyte maturation. Cortés-Vazquez et  al. [27] 
reported that patients with a higher ovarian response 
to stimulation, as measured by the number of follicles 
developed, tended to have a higher number of mature 
oocytes retrieved. However, excessive ovarian response 
may also be associated with compromised oocyte qual-
ity and maturity [46]. Table  2 summarizes some other 
key studies investigating the predictive value of these 
single indicators with the suggested cut-off values. It 
is important to note that the optimal cut-off values or 
ranges may vary across different patient populations, 
stimulation protocols, and clinical settings. Therefore, 
these cut-off values should be interpreted with caution, 
and that they may need to be adjusted or validated for 
specific patient populations or clinical contexts.

Table 1 Studies on the influence of patient characteristics on oocyte maturation

BMI body mass index, AMH anti-Müllerian hormone, DOR diminished ovarian reserve, PCOS polycystic ovarian syndrome

Author Year Patient characteristics Findings

MacKenna [15] 2017 BMI Overweight and obesity were linked to lower number of oocytes retrieved

Kozlowski [16] 2022 Age, AMH Older age and lower AMH levels were associated with a lower number of mature oocytes retrieved

Moy [17] 2015 DOR, BMI Obese women with DOR have lower AMH levels and retrieve fewer oocytes compared to nonobese 
women with DOR, indicating a potential impact of obesity on ovarian function

Sarais [18] 2016 BMI Patient with BMI ≥ 30 kg/m [2] reached lower percentage of mature oocytes than normal‑weight 
patients

Rosales [19] 2020 Thyroid disorders T3f and T4f were associated with oocytes maturation based on equation provided

Fan [20] 2023 Endometriosis Patients with endometriosis had a higher risk of immature oocytes and lower fertilization rates

Kumar [21] 2013 PCOS PCOS patients showed higher oocyte immaturity rates, although the total number of oocytes 
retrieved was higher

Mazloomi [22] 2022 PCOS Decreased E2 levels may be the cause of immature oocytes in PCOS cases
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Combined indicators
Recognizing the limitations of relying solely on sin-
gle indicators, researchers have increasingly explored 
the utility of combining multiple indicators to enhance 
the accuracy of predicting oocyte maturation [4, 24, 31, 
47–49]. By integrating various hormonal, ultrasound, and 
clinical parameters, these combined indicators aim to 
provide a more comprehensive assessment and improve 
the predictive power.

One promising approach is to combine hormonal indi-
cators. A study by Barroso et al. [51] evaluated a combi-
nation of AMH, FSH, and E2 levels for predicting oocyte 
maturation rates in women undergoing IVF. The authors 
found that this combined hormonal panel outperformed 
any single hormone indicator, achieving a higher pre-
dictive accuracy for both the number of mature oocytes 
retrieved and fertilization rates. Permadi et al. [52] evalu-
ated a combined indicator comprising AMH and antral 
follicle count (AFC) in a short protocol. They found a 
strong positive correlation between the antral follicle 
count (AFC) and the number of oocytes retrieved, with 
AFC being the best predictor, followed by the combina-
tion of AMH and AFC, and then AMH alone. This con-
trasts with findings by Nelson et  al. [51], who reported 
that AMH was the best predictor of outcomes, followed 
by the AMH-AFC combination and AFC alone. Moreo-
ver, the results align with those of Jayaprakasan et al. [53] 
and Liao et al. [54], who also found that AFC is a better 
predictor of ovarian response and clinical pregnancy 
rates compared to AMH or the combination of AFC and 

AMH. This suggests that AFC may be a more reliable 
indicator of ovarian reserve in women without discord-
ant ovarian markers.

In addition to hormonal indicators, ultrasound param-
eters have been incorporated into combined assessment 
tools. These parameters provide valuable information 
about ovarian reserve, follicular development, and endo-
metrial receptivity, all of which can influence oocyte 
maturation and IVF outcomes. A study by Chen et  al. 
[55] investigated the morphology and perifollicular blood 
flow (PFBF) indicators of follicles on the hCG injection 
day during IVF cycles. They found that larger follicle 
diameters correlated with increased peak systolic veloc-
ity and decreased resistance index. Additionally, follicle 
size was positively associated with oocyte maturation, 
fertilization, and cleavage rates, though the largest fol-
licles showed a significant drop in normal fertilization 
rates and high-quality embryos compared to mature folli-
cles. Liang et al. [56] developed a multivariate classifiers-
based follicle volume biomarker using 3D ultrasound to 
better predict oocyte maturity and optimize hCG admin-
istration timing in IVF. Their method outperformed con-
ventional 2D ultrasound measurements and improved 
accuracy in predicting ovarian hyper-response.

Furthermore, researchers have explored the integra-
tion of clinical factors, such as age, BMI, and ovarian 
response to stimulation, with hormonal and ultrasound 
parameters. These factors can influence ovarian reserve, 
ovarian response, and oocyte quality, making them rel-
evant for predicting oocyte maturation. Agarwal et  al. 

Table 2 Studies on the predictive value of single indicators for oocyte maturation

Study Year Types Indicator Cut-off value Findings

Morales [4] 2021 Hormone levels Estradiol 3000 pg/ml Serum estradiol on the day of trigger 
was positive associated with metaphase II 
oocytes (r = 0.489)

Yang [31] 2023 Ultrasound parameters Follicle size 16 mm in diameter Larger follicle size on the day of hCG trig‑
ger was associated with a higher propor‑
tion of mature oocytes retrieved

Malathi [47] 2021 Hormone levels Estradiol 4000 pg/ml Serum estradiol on the day of trigger 
was positive associated with number 
of mature oocytes

Jeong [48] 2022 Hormone levels AMH Access AMH, 1.215 ng/ml; Elecsys AMH, 
1.095 ng/ml

Lower AMH levels correlated with a lower 
number of mature oocytes retrieved 
by the equation provided

Abbara [49] 2018 Ultrasound parameters Follicle size 12–19 mm in diameter Follicles 12–19 mm on the day of trigger 
was associated with mature oocyte

Yan [50] 2022 Clinical parameters Ovarian response (1) No presence of follicles with a diam‑
eter > 10 mm on the 6th–8th days 
of ovarian stimulation, (2) serum E2 
level < 655.1–728.3 pmol/l on the 6th 
day of ovarian stimulation, and (3) slow 
follicular development and increased fol‑
licular diameter < 3 mm within 3 days

Suboptimal ovarian response to stimula‑
tion tended to lower number of mature 
oocytes retrieved
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[57] conducted a prospective study demonstrating that 
serum levels of LH, FSH, and progesterone (P4) 12  h 
after a GnRHa trigger are predictive of oocyte maturity. 
They found that lower levels of LH and P4 were signifi-
cantly associated with reduced oocyte maturity, ferti-
lization rates, and grade 1 embryos. Nevertheless, the 
development and validation of these combined indi-
cator tools require careful statistical analysis, consid-
eration of potential confounding factors, and external 
validation across diverse patient populations. Ongoing 
research efforts are focused on refining these integrated 
approaches, exploring new indicator combinations, and 
evaluating their clinical utility in predicting oocyte matu-
ration and optimizing IVF outcomes.

Predictive models
Building upon the concept of combined indicators, 
researchers have developed various predictive models 
and algorithms to assess oocyte maturity during IVF-
ET [58–64]. These models leverage advanced statistical 
techniques, machine learning algorithms, or artificial 
intelligence to integrate multiple parameters and identify 
patterns that can accurately predict oocyte maturation 
rates. While predictive models offer a more sophisti-
cated and data-driven approach, their performance can 
vary depending on the specific parameters included, the 
modeling techniques employed, and the characteris-
tics of the study population. It is crucial to evaluate the 
strengths and limitations of these models, considering 
factors such as generalizability, reproducibility, and clini-
cal applicability.

In a study by Enatsu et al. [58], a predictive model was 
developed using a random forest algorithm, incorporat-
ing age, AMH, AFC, BMI, FSH, E2, hCG dose, and COH 
duration. This model achieved an AUC of 0.81 for pre-
dicting oocyte maturation rates and 0.75 for predicting 
live birth rates, highlighting the potential of combining 
multiple parameters. Fu et  al. [60] employed a gradient 
boosting decision tree model to predict oocyte matura-
tion rates. The model included age, AMH, AFC, BMI, 
FSH, LH, E2, progesterone, follicle size, and endome-
trial thickness. With an AUC of 0.85, this combined 
model demonstrated superior predictive performance 
compared to individual indicators. Recently, Hanassab 
et  al. [61] proposed a combined indicator comprising 
age, AMH, AFC, BMI, FSH, E2, and follicle size for pre-
dicting oocyte maturation rates. This combined indica-
tor achieved an AUC of 0.79, outperforming individual 
parameters and highlighting the utility of integrating 
multiple factors. Vogiatzi et  al. [64] developed an artifi-
cial neural network model for predicting oocyte matura-
tion rates, incorporating age, AMH, AFC, BMI, FSH, LH, 
E2, progesterone, follicle size, endometrial thickness, and 

COH duration. This model achieved an impressive AUC 
of 0.88 in a multicenter study, showcasing the potential 
of advanced machine learning techniques in combination 
with multiple parameters.

Reuvenny et  al. [63] utilized data from 9622 cycles 
between 2018 and 2022, and an XGBoost algorithm sug-
gested trigger days based on MII oocyte predictions, pre-
diction errors, and outlier detection results. Evaluation 
involved a test dataset with three quality groups, compar-
ing suggested trigger days with actual physician choices. 
Results demonstrated significant increases in oocyte and 
MII oocyte numbers across all quality groups, indicat-
ing the potential for improved cycle outcomes. Imple-
menting such models could enhance decision-making, 
workload balance, and protocol standardization while 
catering to individual patient needs. Ferrand et  al. [59] 
built the machine-learning models to predict the num-
ber of oocytes retrieved from COH through a dataset of 
11,286 cycles. The result showed key factors influencing 
predictions included antral follicle count, basal AMH, 
and FSH levels. They also highlighted the potential of uti-
lizing secure frameworks like Substra for analyzing sensi-
tive fertility data. Houri et al. [62] developed a machine 
learning XGBoost algorithms for predicting oocyte mat-
uration rates in a retrospective study. The model incor-
porated peak estradiol level on trigger day, estradiol level 
on antagonist initiation day, average gonadotropin dose 
per day, and progesterone level on trigger day, achieving 
a 75% accuracy rate in predicting high oocyte maturation 
rates.

Strengths of these predictive models include their abil-
ity to integrate complex datasets, identify intricate pat-
terns, and potentially predict oocyte maturity rates with 
higher accuracy compared to traditional approaches. 
Additionally, some models, such as the artificial neural 
network, can effectively handle nonlinear relationships 
and complex interactions among multiple variables [64]. 
However, limitations and challenges associated with 
these predictive models should also be considered. Their 
performance heavily depends on the quality and repre-
sentativeness of the training data, as well as the model’s 
ability to generalize to diverse patient populations [60]. 
Overfitting, where the model performs well on the train-
ing data but fails to generalize to new data, is a common 
issue that needs to be addressed through appropriate val-
idation and regularization techniques.

Furthermore, the interpretability and transparency of 
some complex models, such as deep learning algorithms, 
can be a challenge, making it difficult to understand the 
underlying decision-making process. This can raise con-
cerns regarding the clinical applicability and acceptance 
of these models by healthcare professionals and patients 
[64]. Ongoing research efforts are focused on addressing 
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these limitations, exploring new modeling techniques, 
and validating the performance of these predictive mod-
els across multiple clinical settings. Additionally, the inte-
gration of emerging technologies, such as proteomics, 
metabolomics, and genomics, may further enhance the 
predictive power of these models by providing additional 
insights into the underlying biological processes influ-
encing oocyte maturation [65]. Besides the traditional 
clinical or COH period-based parameters, Fjeldstad 
et al. [66] conducted a study to develop a deep learning 
image analysis model aimed at assessing oocyte qual-
ity by predicting blastocyst development from images of 
denuded mature oocytes. Utilizing 37,133 static oocyte 
images from eight fertility clinics across six countries, 
the model achieved an AUC of 0.64, balanced accuracy of 
0.60, specificity of 0.55, and sensitivity of 0.65 on the test 
dataset, with the highest performance observed in the 
age group 38–39 years. This research complements other 
predictive models based on clinical and COH param-
eters, offering a novel approach through image-based 
analysis. Table 3 summarizes studies that have explored 
combined indicators and predictive models for assessing 
oocyte maturation.

COH and trigger time
The process of COH involves the administration of exog-
enous hormones to stimulate the ovaries, promoting the 
recruitment and growth of multiple follicles simultane-
ously [67]. Different COH protocols are employed, each 
with its own advantages and considerations. Some com-
monly used protocols include the following: (a) GnRH 
agonist long protocol involves initial downregulation 
of the pituitary gland using a GnRH agonist, followed 
by ovarian stimulation with gonadotropins. The down-
regulation prevents premature ovulation and allows for 
better control over follicular development. (b)  While a 
GnRH antagonist protocol is introduced during the late 
follicular phase to prevent premature ovulation without 
prior downregulation, which can shorten the duration of 
treatment and reduce the risk of ovarian hyperstimula-
tion syndrome (OHSS) [68]. (c) Moreover, short protocol 
involves starting gonadotropin stimulation in the early 
follicular phase without prior downregulation, which can 
be advantageous for patients with a poor ovarian reserve 
or those who do not respond well to the long protocol 
[69]. (d) Mild stimulation protocols aim to minimize the 
risk of OHSS by using lower doses of gonadotropins or 
alternative medications, such as clomiphene citrate or 
letrozole. Mild stimulation can be beneficial for patients 
with a high risk of OHSS or those who prefer a less inten-
sive treatment regimen [70].

In addition to COH, selecting the optimal time for trig-
gering ovulation is another critical factor in maximizing 

oocyte maturity rates. The trigger time refers to the pre-
cise moment when final oocyte maturation is induced, 
typically through the administration of hCG or a syn-
thetic analog, such as a GnRH agonist [71]. Accurate tim-
ing of the trigger is essential, as premature triggering can 
lead to the retrieval of immature oocytes, while delayed 
triggering may result in ovulation occurring before the 
oocyte retrieval procedure, compromising IVF out-
comes [72]. The selection of the appropriate trigger time 
is a delicate balance, as it needs to account for individual 
patient characteristics, ovarian response to stimulation, 
and the specific COH protocol employed [50]. Further-
more, the choice of trigger agent (hCG or GnRH ago-
nist) can also influence oocyte maturation rates and IVF 
outcomes [73]. The hCG trigger has traditionally been 
used to induce final oocyte maturation by mimicking the 
natural LH surge and supporting luteal phase function; 
however, it carries a higher risk of OHSS, especially in 
high responders. Alternatively, the GnRH agonist trigger 
induces an endogenous LH surge by stimulating the pitu-
itary gland, significantly reducing the risk of OHSS but 
potentially requiring intensive luteal phase support due 
to a shorter duration of the LH surge.

The maturation of oocytes is a complex process influ-
enced by various physiological and genetic factors [74]. 
During the follicular phase, the growing follicles produce 
estradiol, which plays a key role in preparing the oocyte 
and the endometrium for potential implantation. The LH 
surge induced by the trigger completes the oocyte matu-
ration process, leading to resumption of meiosis and sub-
sequent oocyte release. Genetic factors also play a critical 
role in oocyte quality and maturation [75]. Variations in 
genes related to folliculogenesis, hormone receptors, and 
oocyte metabolism can affect an individual’s response 
to stimulation and overall IVF outcomes. Personalized 
approaches to COH and trigger timing, considering both 
physiological and genetic factors, are essential for opti-
mizing success rates.

Limitations
Despite the advancements in predictive approaches, sev-
eral gaps and limitations persist in the existing literature 
and methods. Firstly, many studies have been conducted 
in single-center settings or on specific patient popula-
tions, which may limit the generalizability of their find-
ings to broader contexts. Secondly, the use of varying 
definitions, protocols, and methodologies across stud-
ies can make it challenging to compare and synthesize 
results effectively. Moreover, some predictive models 
have shown promising results within their respective 
study populations, and there is a need for more exten-
sive external validation to ensure their robustness and 
clinical applicability across diverse settings. Finally, the 
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integration of emerging technologies, such as proteom-
ics, metabolomics, and genomics, may provide additional 
insights and improve the accuracy of oocyte maturation 
prediction.

Future directions and recommendations
Based on the findings, several potential areas for further 
investigation and development can be considered. Ini-
tially, further research is needed to investigate the impact 
of patient-specific factors, such as genetics, lifestyle, and 
environmental exposures, on oocyte maturation and 
incorporate these factors into predictive models. Based 
on these considerations, conducting large-scale, multi-
center studies with standardized protocols and diverse 
patient populations would enhance the generalizability 
and robustness of predictive models and indicators. Fol-
lowing this, integration of advanced omics technologies: 
incorporating data from emerging technologies, such as 
proteomics, metabolomics, and genomics, into predictive 
models could provide deeper insights into the molecular 
mechanisms underlying oocyte maturation and poten-
tially improve prediction accuracy. Subsequently, explor-
ing the integration of patient-specific factors would be an 
appropriate way to improve the evaluation ability, includ-
ing genetics, lifestyle, and environmental exposures, 
into predictive models which may lead to more person-
alized and tailored approaches for oocyte maturation 
prediction.

Conclusion
Accurately predicting oocyte maturation is essential 
for the success of IVF-ET procedures. Combining mul-
tiple indicators and leveraging advanced predictive 
models can enhance accuracy, but overcoming existing 
challenges through standardization and the integration of 
multidisciplinary approaches remains critical for further 
advancements.
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