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Abstract 

Purpose This study aimed to evaluate the effects of immature oocyte proportion in a cohort on both IVF laboratory 
and clinical outcomes.

Materials and methods This retrospective cohort study took place at Morula IVF Jakarta Clinic from January 2016 
to July 2020. A total of 1.826 couples undergoing IVF-ICSI/IMSI were included and classified into four groups according 
to the proportion of immature oocytes retrieved during OPU as follows: (1) immature ≤ 15% (n = 1.064), (2) immature 
16–25% (n = 369), (3) immature 26–50% (n = 331), and (4) immature > 50% (n = 62). Primary outcomes were clinical preg-
nancy and miscarriage. Embryology laboratory results were assessed as the secondary outcomes. Statistical analyses 
were carried out utilizing Kruskal–Wallis or chi-square tests. p-value < 0.05 was considered statistically significant.

Results Increased proportion of immature oocytes in a cohort was significantly associated with body mass index, 
tubal factors, and estradiol level on trigger day (p < 0.05). Neither clinical pregnancy nor miscarriage was associated 
with the immature oocyte proportion (adjusted p-value = 0.872 and p = 0.345, respectively). However, a higher propor-
tion of immature oocytes significantly reduced the total number of fertilized oocytes, number of top-quality cleav-
ages, and blastocysts (p < 0.001). Furthermore, embryo transfer cancelation rates due to poor embryo quality were 
elevated significantly.

Conclusion Despite overall poor embryo development in the laboratory, our study seems to suggest that the pro-
portion of immature oocytes in a cohort has no impact on clinical pregnancy and miscarriage rate in IVF program.
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Introduction
Controlled ovarian stimulation (COS) is a common pro-
cedure in IVF that is intended to yield multiple oocytes. 
Increased number of retrieved oocytes would elevate 
the probability of obtaining good quality embryos, thus 
increasing the likelihood of pregnancy [1, 2]. Various 
stimulation protocols are now available to attain individ-
ualized and desirable outcomes [3]. However, regardless 
of the COS protocols, up to 30% of retrieved oocytes dur-
ing ovum pickup (OPU) are immature, at either the ger-
minal vesicle (GV) or metaphase I (MI) stage [4]. Some 
of these oocytes eventually extrude the first polar body 
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and mature following an overnight culture, while others 
remain immature and are discarded [5].

Dyssynchronous follicular development is considered 
an underlying factor for the loss of oocyte resources 
[6]. Physiologically, LH surge triggers a germinal vesi-
cle breakdown followed by a meiotic spindle assembly, 
releasing the first polar body to reduce the genetic mate-
rial by half. Subsequent arrest of meiosis occurs when 
it reaches the metaphase of the second meiotic divi-
sion (MII), also known as the nuclear maturation stage. 
Concurrently, to ultimately produce fertilizable oocytes, 
cytoplasmic maturation is characterized by structural 
changes in endoplasmic reticulum and mitochondria, 
which facilitates the completion of nuclear maturation, 
fertilization, and early embryo development, thus a con-
tributary element for implantation, pregnancy, and nor-
mal fetal development [7–9]. Principally, reaching the 
MII stage in synchrony with cytoplasmic maturation is 
vital for successful oocyte fertilization following sperm 
microinjection [10].

A previous study reported a significantly higher per-
centage of poor-quality day-3 embryos in the group 
with a higher proportion of immature oocytes [11]. Cor-
respondingly, it was found that subjects with high GV 
during OPU exhibited a significantly lower implantation 
and clinical pregnancy rate [12]. A high degree of DNA 
damage, confirmed through immunostaining assay, was 
postulated as one of the underlying causes [12]. Likewise, 
previous research  suggested that an increased propor-
tion of immature oocytes (GV and MI) in a cohort could 
reduce the fertilization ability of sibling MII oocytes, 
resulting in a lower number of good-quality embryos and 
a lower implantation rate [13]. Contrarily, other studies 
have demonstrated that the number of immature oocytes 
in a cohort does not influence early embryo develop-
ment, implantation rate, and clinical pregnancy [14, 
15]. Considering the current evidence is conflicting and 
inconclusive, this study aimed to elucidate the effects of 
immature oocyte proportion in a cohort on both the IVF 
laboratory and clinical outcomes.

Materials and methods
Study population
A total of 1.826 IVF cycles at Morula IVF Jakarta Clinic 
from January 2016 to July 2020 were retrospectively 
extracted from medical records and analyzed. The data 
included a complete patient medical history that was 
relevant to the IVF treatment. Patients who had fewer 
than five retrieved oocytes, were diagnosed with a poor 
prognosis, and underwent either freeze-all or natural 
cycle procedures were not included in the study. These 
exclusion criteria were established to minimize biases 
stemming from variations in patients’ backgrounds, 

thereby enabling a more precise evaluation of the impact 
of the number of immature oocytes on both laboratory 
and clinical outcomes of IVF within a cohort. The data 
obtained were then classified into four groups accord-
ing to the proportion of immature oocytes: (1) imma-
ture ≤ 15% (n = 1.064), (2) immature 16–25% (n = 369), 
(3) immature 26–50% (n = 331), and (4) immature > 50% 
(n = 62). Of all studied subjects, 1.631 couples managed 
to perform embryo transfer, of which 950 couples suc-
ceeded in performing embryo transfer on day 5/6, while 
the remaining (n = 681) were processed with embryo 
transfer on day 2/3. Patient characteristics including age, 
body mass index, duration of infertility, and other param-
eters were analyzed.

Ovum pickup and maturity assessment
All enrolled participants underwent controlled ovarian stim-
ulation with an antagonist protocol. Briefly, recombinant fol-
licle-stimulating hormone (rFSH, Gonal-f, Merck Serono) or 
rFSH plus recombinant luteinizing hormone (rFSH + rLH) 
(Pergoveris, Merck Serono) or highly purified human meno-
pausal gonadotropin (HP-hMG, Menophur, Ferring) was 
injected daily, starting from day 2/3 of the menstrual cycle. 
Gonadotropin-releasing hormone (GnRH) antagonists 
(0.25 mg Cetrotide, Merck, KGaA) were administered daily 
on day 4/5 of stimulation. A maturation trigger injection 
(6,500 IU Ovidrel, Merck, Serono) was then given when at 
least three follicles had reached 18 mm and OPU was per-
formed 36  h later. After retrieval, cumulus-oocyte com-
plexes (COCs) were rinsed with a buffer medium (G-MOPS, 
Vitrolife, Sweden) and then incubated in a culture medium 
(G-IVF, Vitrolife, Sweden) at 37 °C in the presence of 6%  CO2 
and 5%  02 for 3 h. Subsequently, COCs were denudated to 
remove cumulus cells after undergoing immersion in hyalu-
ronidase (<30 seconds). Maturity assessment was performed 
immediately using an inverted microscope with 200 × mag-
nification. The distinct presence of the first polar body 
denoted a mature oocyte which was subsequently insemi-
nated through intracytoplasmic sperm injection (ICSI) or 
intracytoplasmic morphologically selected sperm injection 
(IMSI). Infertile patients selected for IMSI displayed subopti-
mal sperm morphology, as evaluated through semen analysis 
and also those with a track record of repeated unsuccessful 
attempts to produce high-quality blastocysts. Meanwhile, 
immature oocytes at either prophase I (displayed as GV) or 
MI (characterized by GV breakdown without the first polar 
body extrusion) stage were recorded.

Fertilization, embryo grading, and outcome assessment
Eighteen hours after insemination, fertilization was 
assessed by observing for the presence of two pronu-
clei and a second polar body. The embryos were cul-
tured up to day 2/3 or day 5 depending on the number 
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of available good cleavage-stage embryos. Extended 
culture was encouraged for patients with at least three 
good cleavage-stage embryos for transfer at the blasto-
cyst stage. Embryos were graded as good, fair, or poor 
according to the Society for Assisted Reproductive Tech-
nology (SART) grading system [16]. Parameters to assess 
cleavage-stage embryos include cell/blastomere number, 
fragmentation level, blastomere size, and shape regular-
ity. Blastocysts were graded on the density of inner cell 
mass and trophectoderm and blastocoel cavity expansion 
[17]. Embryo transfer was eventually performed on either 
day 2/3 or 5. Primary outcomes that were subsequently 
evaluated were clinical pregnancy, ultrasound confirma-
tion of a gestational sac or fetal heartbeat, and miscar-
riage defined by pregnancy loss before the first 22 weeks 
of gestation.

Statistical analysis
Data were tested for normality using the Kolmogorov–
Smirnov normality test and were presented as median 
(Q1, Q3) due to non-normal data distribution. The 
Kruskal–Wallis test was then used to analyze all numeri-
cal variables, while the chi-square test was used to ana-
lyze all categorical variables. Multivariate analysis was 
subsequently performed to adjust for potential con-
founding variables. The analyses were done using Statisti-
cal Package for Social Studies (SPSS) at a 95% confidence 
level.

Results
A total of 1.826 cycles were sorted into four groups based 
on the immature oocyte proportion. As shown in Table 1, 
subjects across all groups were broadly similar in female 

Table 1 Baseline and clinical characteristics of studied subjects

Data were presented as median (Q1–Q3). Data were presented as a number of subjects and percentage (n (%)). Kruskal–Wallis tests were used for the numerical 
variable. Chi-square tests were used for the categorical variable
a Compared with group 4, p < 0.05
b Compared with group 3, p < 0.05

Baseline and clinical 
characteristics

Overall (n = 1.826) Group 1 (n = 1064) Group (n = 369) Group 3 (n = 331) Group 4 (n = 62) p-value

Baseline characteristics
 Female age (year) 32 (29, 35) 32 (30, 35) 32 (30, 35) 32 (29, 34) 31 (29, 33) 0.153

 Body mass index (kg/m2) 23.05 (20.90, 25.78) 23.05 (20.90, 25.64)a 22.70 (20.74, 25.30)a,b 23.23 (21.15, 26.26) 23.84 (21.78, 27.06) 0.031

 Duration of infertility (year) 4 (3, 7) 4 (3, 7) 5 (3, 7) 4 (3, 7) 4 (3, 7) 0.820

 Type of infertility

   Primary infertility 1630 (89.4%) 947 (89.3%) 325 (88.1%) 300 (90.6%) 58 (93.5%) 0.500

   Secondary infertility 193 (10.6%) 114 (10.7%) 44 (11.9%) 31 (9.4%) 4 (6.5%)

Clinical characteristics
 Etiology of infertility

    Tubal factor 323 (17.7%) 200 (18.8%)a 66 (17.9%) 54 (6.3%) 3 (4.8%) 0.039

    Endometrial factor 157 (8.6%) 94 (8.8%) 31 (8.4%) 28 (8.5%) 4 (6.5%) 0.926

    Sperm factor 638 (34.9%) 372 (35%) 128 (34.7%) 117 (35.3%) 21 (33.9%) 0.996

    Unexplained factor 603 (33.0%) 349 (32.8%) 126 (34.1%) 99 (29.9%) 29 (46.8%) 0.072

    PCO 111 (6.1%) 69 (6.5%) 17 (4.6%) 18 (5.4%) 7 (11.3%) 0.180

    Others factor 249 (13.6%) 140 (13.2%) 51 (13.8%) 47 (14.2%) 11 (17.7%) 0.754

 Antral follicle count 12 (10, 16) 12 (10, 16) 12 (10, 16) 12 (10, 16) 13 (10, 18) 0.221

 Anti-Mullerian hormone (ng/
ml)

3.61 (2.47, 5.51) 3.58 (2.47, 5.42) 3.47 (2.28, 5.42) 3.93 (2.69, 6.08) 3.75 (2.74, 5.62) 0.057

 Basal FSH (mIU/mL) 6.86 (5.85, 8.02) 6.89 (5.88, 8.11) 6.81 (5.84, 7.95) 6.97 (5.74, 7.98) 6.17 (5.52, 7.76) 0.308

 Basal estradiol (pg/mL) 34.25 (26.45, 45) 34.18 (26.83, 45) 34 (26.52, 44) 35 (26.2, 45) 31.5 (23.47, 45) 0.494

 Basal progesteron (ng/mL) 0.23 (1.13, 0.36) 0.24 (0.13, 0.36) 0.21 (0.11, 0.35) 0.25 (0.15, 0.38) 0.22 (0.09, 0.36) 0.165

 Estradiol level on trigger day 
(pg/mL)

2467 (1884, 3201) 2509 (1914,3273)b 2497 (1882, 3183) 2373 (1835, 2942) 2370 (1867, 3126) 0.039

 Total gonadotropin dosage 
(IU)

2025 (1650, 2700) 2100 (1914, 2700) 2025 (1800, 2550) 2025 (1650, 2700) 2081 (1500, 2700) 0.921

 Stimulation duration (day) 9 (8, 9) 9 (8, 10) 9 (8, 9) 9 (8, 9) 9 (8, 9) 0.516

 Endometrial thickness (mm) 11 (10, 12) 11 (10, 12) 11 (9, 12) 11 (10, 12) 11 (10, 12) 0.331
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age with an overall average of 32  years. Other baseline 
variables were also comparable except for body mass 
index (p = 0.031). Concordantly, there was no significant 
difference in the clinical parameters other than the eti-
ology of infertility (tubal factor, p = 0.039) and estradiol 
level on trigger day (p = 0.039).

No significant difference was observed in the pri-
mary outcomes across all four groups, i.e., clinical preg-
nancy and miscarriage rate (p = 0.640, RR 0.44 95% CI 
(0.40–0.48) and p = 0.141, RR 0.98 (0.75–1.27) respec-
tively) (Table 2). To underscore these primary findings, 
supplementary Table  1 provides the results of propen-
sity score matching analysis for the primary outcomes 
of the current study. Multiple analyses (Table 2) showed 
that the likelihood of clinical pregnancy and miscarriage 
did not differ among the groups even after adjusting for 
potential confounders such as infertility duration, total 
gonadotropin usage, endometrial thickness, and BMI 
(p = 0.872, RR 0.99 95% CI (0.91–1.08) and p = 0.345, RR 
0.977 95% CI (0.76–0.98), respectively).

The number of GV as well as MI stages were elevated fol-
lowing high immature proportion (p-value < 0.001). Simi-
larly, the number of injected and fertilized oocytes declined 
gradually from group 1 to 4. A similar descending trend 
was also confirmed in the embryonic development param-
eters in which the number and quality of cleavage- and 
blastocyst-stage embryos were significantly decreased from 
group 1 to 4 (Table 3). Furthermore, ET cancelation rates 
due to poor embryo quality were also significantly different 
across all groups; likewise, the number of embryos trans-
ferred on day 2/3. Nonetheless, comparable number of 
retrieved oocytes and embryos transferred on day 5/6 was 
noted in the secondary outcomes (Table 3).

Discussion
Our study highlights the insignificant impact of immature 
oocyte proportion in a cohort on clinical pregnancy and 
miscarriage rate. This finding agrees with a previous study 
which also observed similar pregnancy rate among stud-
ied cycles with different quantities of immature oocytes 
[14]. Nonetheless, increased immature oocyte proportion 
is related to less favorable embryo development at the fer-
tilization up to the blastocyst stage. Natural embryo selec-
tion throughout the culture might account for the lack of 
association between the immature oocyte proportion in a 

cohort and the primary outcomes. Oocytes with impaired 
quality seemed to be eliminated at the beginning over a 
failed fertilization process or the incapability of devel-
oping into a viable embryo at the cleavage or blastocyst 
stage. This study also observed that a higher number of 
immature oocytes led to an elevated ET cancelation rate 
due to poor embryo quality. Interestingly, however, even 
though the embryo transfer cancelation rate due to poor 
embryo quality was high in group 4 with > 50% immature 
oocyte proportion, the comparable number of blastocysts 
transferred was observed in all groups.

In analyzing the baseline characteristics, we observe a 
trend of higher BMI in the group with a higher proportion 
of immature oocytes and, conversely, a lower BMI tendency 
in the other group (Table 1). This finding is in line with a 
study by Machtinger and colleagues who established the 
association between elevated BMI and a decreased number 
of retrieved MII oocytes [18]. In addition to reproductive 
hormones, it was hypothesized that an elevation in circulat-
ing glucose, insulin, free fatty acids, and adipokines in obese 
patients could likely contribute to the dysfunction of oocyte 
development and competency by disrupting the intricate 
molecular orchestration of ovarian dynamics [19].

The clinical characteristics of subjects revealed a sub-
stantial difference in the proportion of immature oocytes 
between tubal factor infertility (see Table 1). This finding 
is relevant to the previous observations which suggested 
a discrepancy in the quantity of mature oocytes between 
tubal and unexplained infertility factors, proposing a 
potential link between its condition and the oocyte matu-
ration process [20]. Different physiological distinctions in 
the development of oocytes may be one of the contribu-
tors to its condition. Moreover, in line with the presump-
tion of others suggested that defective intrinsic factors of 
oocytes in certain types of infertility cases could cause 
maturation arrests [21, 22], akin to what was presumed to 
occur in our study. Tubal factor infertility encompasses 
various causes of tubal damage, such as tubal blockage 
due to pelvic inflammatory disease resulting from sexu-
ally transmitted infections, acute salpingitis, endometrio-
sis, and peritoneal factors [23]. These factors collectively 
comprise what is recognized as tubal factor infertility. 
The notable variances observed among the four studied 
groups may be attributed to varying background causes 
and the severity of tubal factor infertility.

Table 2 Primary outcome among studied groups

Data were presented as subjects and percentages (n (%)). Chi-square tests were used for statistical analysis

Primary 
outcome

Group 1 
(n = 984)

Group 2 
(n = 326)

Group 3 
(n = 281)

Group 4 
(n = 40)

Crude p-value Adjusted p-
value

Crude RR Adjusted RR

Clinical preg-
nancy

433 (44%) 148 (45.4%) 127 (45.2%) 14 (35%) 0.640 0.872 0.44 (0.40–0.48) 0.99 (0.91–1.08)

Miscarriage 45 (4.6%) 24 (7.4%) 11 (3.9%) 1 (2.5%) 0.141 0.345 0.98 (0.75–1.27) 0.97 (0.76–0.98)
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Other than the etiology of infertility, estradiol levels on 
trigger day were also found to decline with the increasing 
proportion of immature oocytes (Table  1). The principal 
hallmark of oocyte maturation is the formation of a hap-
loid metaphase II oocyte. Luteinizing hormone (LH) has 
been identified as the driver of this meiotic progression by 
activating a cascade of ovulatory mediators [24, 25]. Fol-
lowing the mid-cycle surge, circulating LH binds to the G 
protein-coupled receptors on granulosa cells and activates 
the adenylate cyclase/cyclic AMP (cAMP)/cAMP-depend-
ent protein kinase (PKA) pathway. cAMP spike in the 
follicular compartment subsequently suppresses C-type 
natriuretic peptide (CNP) and natriuretic peptide recep-
tor 2 (NPR2) release which activates the EGF network and 
closes gap junctions. Consequently, meiosis I resumption 
is due to the reduction of cGMP, cAMP, and activation 
of phosphodiesterase 3A (PDE3A) and CDK1 resulting 
in MII oocytes formation [25]. As to this, reports suggest 
the mid-cycle LH surge is induced by circulating estradiol. 
The rise of estradiol at the end of the follicular phase is 
known to mediate positive feedback to the LH release due 
to neuro-progesterone synthesis [25, 26]. We assumed that 
a reduced level of estradiol in this study is inadequate to 
exert positive feedback to the hypothalamus causing an 
absence of LH surge resulting in maturation failure.

In the secondary outcomes of this study, both oocyte 
and embryo development were proven to be affected by 

the immature oocyte proportion in a cohort. The decline 
in the laboratory outcomes might be due to the overall 
decrease in the number of mature oocytes that could 
potentially develop to become good-quality embryos. 
Alternatively, as suggested by the previous study, an 
increased proportion of immature oocytes in a cohort 
is pertinent to a jeopardized fertilization and develop-
mental capacity of sibling mature oocytes. The dimin-
ished fertilization and poor embryo development might 
also be caused by incomplete ooplasmic maturation or 
poor oolemma maturation. In conclusion, our study indi-
cates that the presence of a high proportion of immature 
oocytes within a cycle cohort can significantly impede 
overall embryo development. However, if a single top-
quality cleavage- or blastocyst-stage embryo is accessible 
for transfer during the cycle, similar clinical pregnancy 
and miscarriage rates among patients are anticipated, 
regardless of the varied proportion of immature oocytes.
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dCompared with group 3. eCompared with group 4. fCompared with group 4. GV, germinal vesicle; MI, metaphase I; ET, embryo transfer

Secondary outcomes Group 1 (n = 1064) Group 2 (n = 369) Group 3 (n = 331) Group 4 (n = 62) p-value

Number of oocytes 
retrieved

11 (8, 15) 12 (9, 16) 11 (8, 15) 13 (8, 15) 0.349

Number of GV 0 (0, 1)a,b,c 1 (1, 2)d,e 2 (1, 4)f 4 (2, 7)  < 0.001

Number of MI 0 (0, 1)a,b,c 1 (0, 2)d,e 2 (1, 3) 2 (1, 4)  < 0.001

Number of injected oocytes 9 (7, 13)a,b,c 9 (6, 11)d,e 7 (5, 9) 6 (4, 9)  < 0.001

Number of fertilized oocytes7 (5, 9)a,b,c 6 (3, 8)d,e 5 (3, 6)f 4 (2, 5)  < 0.001

Number of cleavage(s) 7 (5, 9)a,b,c 6 (3, 8)d,e 5 (3, 6)f 4 (2, 5)  < 0.001

Number of top-quality 
cleavage(s)

3 (2, 5)a,b,c 2 (1, 4)d,e 2 (1, 3)f 1 (0, 2)  < 0.001

Number of blastocyst(s) 6 (4, 8)a,b,c 5 (3, 7) 5 (3, 6) 4 (2, 5)  < 0.001

Number of top-quality 
blastocyst(s)

3 (2, 4)c 3 (1, 4) 3 (1, 4) 2 (1, 3) 0.001

Number of embryos trans-
ferred on day 2/3

2 (2, 2)b,c 2 (2, 2)e 2 (2, 2) 2 (1, 2)  < 0.001

Number of embryos trans-
ferred on day 5/6

1 (1, 2) 1 (1, 2) 1 (1, 2) 1 (1, 1) 0.345

ET cancelation rate due 
to poor embryo quality

80 (7.5%) 43 (11.7%) 50 (15.1%) 22 (25.5%)  < 0.001

Number of total freezing 
embryo(s)

2 (1, 3) 2 (1, 3) 2 (1, 3) 1 (1, 2) 0.118
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