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Abstract 

Background  Folliculogenesis is an intricate process that involves the development and maturation of ovarian fol-
licles in females. During folliculogenesis, multiple factors including hormones, growth factors, and signaling path-
ways regulate the growth and maturation of follicles. In recent years, microRNA, short non-coding RNA molecules, 
has gained attention due to its roles in the physiology and pathophysiology of various diseases in humans. It is known 
to have an important part in ovarian health and illness and its functions extend to several cellular processes.

Main body  In this overview, we look at the importance of microRNAs in ovarian illnesses and how they function dur-
ing follicle growth in the ovaries. Short RNA molecules (22 nucleotides) called microRNAs may influence several mRNA 
targets in different biological processes. The expression patterns of these small non-coding RNAs undergo dynamic 
changes during the several phases of follicular development; they play a function in post-transcriptional gene regula-
tion. Follicle development, follicular atresia (regression of the follicles), and ovulation are all intricately regulated 
by the dynamic expression of distinct miRNAs throughout the various phases of folliculogenesis.

The role of microRNAs (miRNAs), which are known to regulate gene expression, has recently come to light as cru-
cial in the development and advancement of a number of ovarian diseases. Abnormalities of the human ovary, 
such as ovarian cancer, polycystic ovary syndrome (PCOS), and endometriosis, have prompted extensive research 
into the dysregulation of microRNAs. Endometriosis is associated with miRNAs that are known to have a role in pro-
cesses such as invasion, cell growth, cell adhesion, angiogenesis, and epithelial-mesenchymal transition. The dis-
turbance of target gene expression resulting from abnormal miRNA production is a potential factor contributing 
to cancer development. Some microRNAs (miRNAs) differ in expression levels between women with polycystic ovary 
syndrome and healthy controls, indicating that miRNAs may play a role in the development of PCOS.

Conclusion  Extensive research carried out over the last 20 years has illuminated the roles of microRNAs (miRNAs), 
demonstrating their critical importance in controlling gene expression and the cell cycle. Changes in the quantities 
of microRNAs (miRNAs) may affect the aggressiveness of cancer and contribute to a variety of gynecological disor-
ders. It appears that microRNAs hold potential as diagnostic biomarkers and treatment potential for various ovarian 
diseases.
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Background
In many cellular functions and illnesses, noncoding 
RNAs, such as microRNAs (miRNAs), are very impor-
tant [1]. MiRNAs, consisting of 22 nucleotides, attach 
to target mRNAs’ complementary sequences, disrupt-
ing translation or stability [2]. Discovered by Ambros 
and Ruvkun in 1993, they are present in all animal lin-
eages and have over 2600 distinct mature miRNAs in 
humans [3]. Their functions include developmental 
timing, cell death, fat metabolism, and leaf develop-
ment [4–9].

MicroRNAs, found in cells and bloodstreams, show 
significant variation in expression profiles between 
healthy individuals and those with various diseases [10]. 
Researchers Lawrie et  al. found microRNAs (miRNAs) 
in blood as a non-invasive way to diagnose DLBCL [10]. 
Alterations in miRNA levels have been observed across 
various diseases, including cancer, inflammation, repro-
ductive, metabolic, and cardiovascular disorders [11]. 
Currently, microRNAs are being suggested as diagnosis 
and monitoring tools for cancers and other conditions 
[11]. Dysregulation of miRNA expression has been exten-
sively investigated in female reproductive system diseases 
[11–16].

The female reproductive system’s core function is fol-
liculogenesis, a crucial process that shapes ovarian 
dynamics [17]. The process begins with primordial germ 
cells migrating towards the embryonic genital ridge, dif-
ferentiation, and activation of primordial follicles [17]. A 
significant reduction of these follicles forms the ovarian 
follicle reserve, which recruits growing follicles for fur-
ther development [17]. As follicles undergo apoptosis, 
only a minority become primary follicles, and the pro-
cess continues with the transformation of primary folli-
cles into pre-antral, antral, and Graafian follicles [17]. The 
intricate orchestration of events is influenced by local-
ized signals from both oocytes and somatic cells [17].

Follicular granulosa cells (FGCs) are crucial for sup-
porting oocytes by releasing growth factors and growth 
hormones, and controlling oocyte development [18]. 
Regulating follicular growth and FGC apoptosis is a 
crucial role for microRNAs [18]. Understanding these 
processes is essential for advancing knowledge of ovar-
ian development and related disorders [18]. MicroRNAs 
are pivotal in overseeing a range of mammalian FGC 
functions like proliferation, differentiation, and cumu-
lus expansion [18]. Their significance in oocyte and 
fetal development in mammals is widely acknowledged 
[18]. Nonetheless, the exact impacts and mechanisms of 
miRNA regulation, particularly regarding target genes 
and pathways, are not fully comprehended [19]. Ovarian 
illnesses and disorders are greatly impacted by microR-
NAs, a network of genes that regulate gene expression 

and are essential in the development and advancement of 
these conditions [19].

Ten percent of reproductive-age women suffer from 
endometriosis, a benign chronic illness [11]. Finding 
endometrial glands and stroma outside of the uterus that 
are functioning and responsive to estrogen signaling is 
the hallmark of endometriosis [11]. Endometriosis show-
cases miRNA signatures within lesions, which mediate 
processes like angiogenesis, inflammation, and cell pro-
liferation, affecting the establishment and perpetuation 
of the condition [11]. Both ovarian cancer and polycystic 
ovarian syndrome (PCOS) are endocrine illnesses that 
are affected by microRNAs [20]. PCOS affects 8–13% of 
reproductive-aged women globally, while ovarian can-
cer risk affects 1 in 78 women during their lifetime [20]. 
The altered miRNAs in PCOS disrupt hormonal balance, 
follicular development, and insulin resistance, while in 
ovarian cancer, it leads to oncogenic shifts and metastatic 
cell spread [21]. In the battle against ovarian cancer, miR-
NAs may act as indicators for diagnosis and as targets for 
treatment [22].

The purpose of this study is to provide a synopsis of 
the most current findings on microRNAs (miRNAs) and 
their impact on human follicular development and fol-
liculogenesis. This review focuses on findings regarding 
miRNA roles in follicular development and ovarian dis-
eases (PCOS, endometriosis, and ovarian cancer).

MicroRNA biogenesis
Processing RNA polymerase II/III transcripts, either 
before or during transcription, initiates microRNA bio-
genesis [23]. Two separate mechanisms, known as the 
canonical and non-canonical pathways, are involved in 
miRNA synthesis [24].

Beginning miRNA biogenesis in the canonical route is 
the production of the principal miRNA transcript (pri-
miRNA) [24]. In order to create the precursor miRNA, 
the microprocessor complex cleaves this pri-miRNA [24]. 
Depending on Exportin5/RanGTP, the process of pre-
miRNA export to the cytoplasm follows transcription 
in the nucleus [24]. A mature miRNA duplex undergoes 
further processing in the cytoplasm; a miRNA-induced 
silencing complex (miRISC) is formed when one strand 
of the duplex is integrated with the Argonaute (AGO) 
proteins [24].

One of the non-canonical routes involves the micropro-
cessor complex transferring short hairpin RNA (shRNA) 
to the cytoplasm via Exportin5/RanGTP after cleaving 
it [24]. Extra processing happens via Dicer-independent 
AGO2-dependent cleavage [24]. Although their nuclear 
and cytoplasmic transit is different, both Mirtrons and 
m7G-pre-miRNA need Dicer for cytoplasmic matura-
tion. Mirtrons are exported by Exportin5/RanGTP, in 
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contrast to m7G-pre-miRNA, which is exported through 
Exportin [24].

Regardless of the pathway, the end result is the forma-
tion of a functional miRISC complex [24]. When miRISC 
attaches to target mRNAs, it will interfere with the eIF4F 
complex, leading to translational inhibition [24]. The 
decapping complex is able to remove the m7G cap from 
the target mRNA because deadenylation begins with 
PAN2/3 and ends with the CCR4-NOT complex [24]. At 
long last, the decapped messenger RNA is assisted in its 
5′-3′ degradation by the exoribonuclease XRN1 [24].

Folliculogenesis: an overview
Folliculogenesis is the intricate process by which a wom-
an’s ovarian follicles grow and mature [25]. The pro-
cess starts with the recruitment of primordial follicles, 
which are then transformed into primary follicles after a 
sequence of growth and differentiation phases [25]. Fol-
licle development continues with the formation of sec-
ondary follicles, which are identified by the presence of 
an antrum, a hollow filled with fluid, and antral follicles 
[25]. The final stage of folliculogenesis focuses on select-
ing a dominant follicle, responsible for further growth 
and eventually ovulation [25]. Throughout folliculogen-
esis, numerous factors such as hormones, growth factors, 
and signaling pathways work together to coordinate the 
enlargement and maturation of the follicles [25]. Par-
ticularly important are the granulosa cells that surround 
the oocyte, playing a vital role in supporting its matura-
tion [25]. The development of the oocyte depends on the 
nutrition and growth substances provided by these cells. 
The orchestration of folliculogenesis involves precise 
regulation and coordination, with intricate interactions 
among the oocyte, granulosa cells, and surrounding ovar-
ian tissues [25]. Any disruptions or abnormalities in this 
process can lead to various reproductive disorders and 
fertility issues [25].

MiRNA regulation in folliculogenesis
Identification of miRNAs involved in folliculogenesis
All stages of ovarian follicle development—from growth 
to regression (atresia) to ovulation—rely on microRNAs 
(miRNAs) [19]. Figure  1 shows a summary of the fol-
liculogenesis process and the miRNAs that play roles in 
each stage of follicular development. These tiny non-cod-
ing RNA molecules are involved in post-transcriptional 
gene regulation and undergo dynamic changes in their 
expression patterns during the various phases of folli-
cular development in Fig.  1 [19]. Multiple studies have 
revealed miRNA expression patterns during folliculogen-
esis (Table 1).

The following basic phases of follicle development are 
associated with specific microRNA (miRNA) expression 

profiles from primordial, to primary, pre-antral, tiny 
antral, and large antral follicles, continues to the pre-
ovulatory follicles, then early and late corpus luteum, and 
corpus albicans [26]. Out of all the stages, let-7a, let-7b, 
miR-125b, and miR-21 had the highest levels of expres-
sion of microRNAs. While miR-199a-3p, miR-145, and 
miR-31 were all overexpressed during follicular develop-
ment, their expression dropped dramatically during folli-
cular-luteal transition [27].

Follicle development, also known as folliculogenesis, 
initiates with the breakdown of germ cell clusters and 
progresses with the formation of primordial follicles [27]. 
A prior investigation discovered the expression of miR-
143 within pre-granulosa cells through the application of 
in situ hybridization. This miRNA reportedly suppresses 
the expression of genes associated with the cell cycle and 
reduces the proliferation of pre-granulosa cells, hence 
inhibiting the formation of primordial follicles [50]. More 
than ninety-nine percent of ovarian follicles undergo 
atresia degeneration during folliculogenesis [50].

Mature oocytes and follicular development (FD) take 
place in a woman’s ovary [21]. However, during these 
processes, a complex and natural phenomenon known as 
atresia occurs [21]. The apoptosis of the granulosa cells 
(GCs) surrounding the oocytes is a hallmark of atresia, 
the spontaneous death of ovarian follicles [21]. Ovulation 
occurs in less than one percent of mammalian ovarian 
follicles, whereas atresia affects more than ninety-nine 
percent [21]. This phenomenon of atresia impacts follicu-
lar growth and development at all stages [21]. A recent 
study found that follicular atresia and its development 
are influenced by certain miRNA clusters and families. 
Which miRNA cluster(s) linked to each stage of follicular 
development, however, remained undetermined [18].

Mechanisms of miRNAs in folliculogenesis regulation
Multiple variables, including Smads, ligand activa-
tion of type I receptors (also called activin receptor-like 
kinases, or ALKs), and members of the TGF-β super-
family, impact the complex process of follicle formation 
[27]. The effect of microRNAs on these components is 
crucial to the control of follicle maturation [27]. Research 
found that the TGF-β/Smad signaling pathway controls 
miRNA-224 expression [27]. It has been discovered that 
elevated levels of miR-224, which target Smad4, enhance 
the proliferation of granulosa cells triggered by TGF-β 
[27]. On the other hand, granulosa cell proliferation trig-
gered by TGF-β1 is somewhat reduced when the endog-
enous miR-224 is suppressed [27].

Furthermore, miRNAs also influence ovulation indi-
rectly [27]. Research conducted by Hasuwa et al. on the 
effects of miR-200b and miR-429 on female mouse infer-
tility found that blocking the production of luteinizing 
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hormone (LH) was hindered by inactivating these miR-
NAs [27]. This finding indicated that these miRNAs 
indirectly contribute to ovulation by playing a role in the 
hypothalamus-pituitary-ovarian axis [27].

Researchers studying ovarian development have now 
recognized that follicular atresia, the process of degen-
eration and regression of ovarian follicles, involves 
granulosa cell (GC) apoptosis as a fundamental physical 
mechanism [51]. This process initiates with the obser-
vation of pyknotic nuclei in GCs. Subsequently, the GC 
layer detaches, leading to basal membrane fragmentation 
[51]. These changes eventually lead to the hypertrophy of 
thecal cells, disrupting thecal integration and thecal ves-
sels [51]. It is noteworthy that oocyte degeneration may 
happen at any stage of atresia [51]. As a result of these 
findings, research on follicular atresia has shifted its 
focus toward investigating the molecular regulation of 
GC apoptosis [51].

Through altering the target genes’ expression levels, 
miRNAs influence how follicular granulosa cells (FGCs) 

function [52]. One such miRNA family, known as the 
miR-let-7 family, exhibits a high degree of sequence con-
servation across various animal species [52]. There is a 
wide range of functions performed by members of the 
let-7 family, including regulating the differentiation and 
proliferation of cells, tissue development, and inhibition 
of tumor development [52]. This miR-let-7 family dem-
onstrates differential expression patterns during follicu-
lar atresia [52]. MiR-let-7a, let-7b, let-7c, and let-7i gene 
expression levels were specifically observed to be lower in 
early and progressed stages of follicular atresia compared 
to healthy follicles [53, 54]. Premature ovarian failure 
(POF) is distinguished by lower levels of let-7c compared 
to healthy women, according to the research [54]. This 
implies that let-7c likely helps in promoting normal fol-
licular development. On the other hand, let-7g is highly 
expressed during atresia, unlike its family members, indi-
cating a different role in follicles [54].

The regulation of apoptosis in follicular granulosa cell 
(FGC) apoptosis involves a complex mechanism wherein 

Fig. 1  microRNA regulates the folliculogenesis. Blue text represents the upregulated miRNA and red text represents the downregulated 
miRNA arranged key steps in the follicular development process. This includes the development of primordial follicles from pre-granulosal 
cells, and progression through the stages of primary, secondary, and antral follicle development, with some follicles experiencing atresia. The 
pre-ovulatory follicle, influenced by luteinizing hormone (LH) and follicle-stimulating hormone (FSH), undergoes ovulation and transitions 
into the luteal stage
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miR-let-7g suppresses mitogen-activated protein kinase 
1 (MAP3K1), resulting in the transcription factor fork-
head O1’s (FOXO1) expression and dephosphorylation 
[53, 54]. This, in turn, triggers FGC apoptosis. By over-
expressing miR-let-7g, the apoptotic rate of FGCs in mice 
increases, along with an elevation in FOXO1 expression 
within FGCs [53, 54]. As a result, dephosphorylated 
FOXO1 eventually builds up in the nucleus. In addition, 
caspase 3, BES1-interacting Myc-like protein (BIM), and 
BCL2-Associated X (BAX) are among the apoptosis-
related genes that are markedly upregulated after trans-
fection of porcine FGCs with miR-let-7g mimics [53, 54]. 
Alternatively, there is a significant decrease in anti-apop-
totic gene expression, as shown in B cell lymphoma-2 
(Bcl-2) and myeloid cell leukemia-1 (Bcl-1). The results 
indicate that the miR-let-7 family has promising future 
applications in controlling FGC apoptosis [53, 54].

MiR-21, among the three miRNAs strongly stimulated 
in murine follicular granulosa cells (FGCs) by luteiniz-
ing hormone (LH), functions as an antiapoptotic factor 
within granulosa cells (GCs) [6]. When miR-21 is absent 
in  vivo, it results in a decrease in the rates of ovula-
tion [6]. Cumulus oocyte complexes (COCs) exhibited 

significantly increased amounts of mature miR-21 and 
its parent transcript (pri-miR-21) throughout maturation 
[6].

Blocking the expression of pri-miR-21 directly influ-
ences the expression of miR-21 in bovine oocytes and 
cumulus cells (CCs) [55]. Enhancing the expression of 
miR-21 had a notable impact on decreasing apoptosis in 
cumulus cells (CCs) [55]. Oocyte-secreted factors (OSFs) 
initiate the activation of the PI3K/Akt signaling pathway, 
resulting in increased miR-21 levels and the suppression 
of apoptosis in CCs [56]. It has been demonstrated that 
oocytes and CCs withstand apoptosis more than other 
antral follicle components [56].

MiRNA and steroidogenesis
miRNAs act as regulators of ovarian steroid hormones by 
aiming at hormone receptors and influencing hormone 
biosynthesis and release [57]. A specific example is the 
regulation of estradiol (E2), which is crucial for ovarian 
follicle development and primarily controlled by the aro-
matase enzyme [57]. A post-transcriptional mechanism 
that limits estradiol production in granulosa cells and 
downregulates aromatase expression was uncovered by 

Table 1  MicroRNA expression profile in folliculogenesis

List of MiRNAs Species Targets Function Ref

miR-21; miR-503 Sheep – Repressed cell cycle and angiogenesis inhibitor  [26]

miR-143 Mice Cyclin D2, CDK4, CDK6 Inhibited formation of primordial follicles;  [27]

miR-43 s Pig INHBB Promoted granulosa cells apoptosis;  [28]

miR-133b TAGLN2 Regulated oocyte maturation;  [29]

miR-200b; miR-429 Mice ZEB1 Supported ovulation by function in the HPA axis  [30]

miR-21 Mice LNA-21 Inhibited apoptosis, increases ovulation rate;  [18, 31]

miR-182 Human SMAD7  [32]

miR-26b Pig ATM; SMAD4; HAS2 Inhibited FGCs apoptosis;  [33, 34]

miR-34a Pig INHBB Promoted GC apoptosis;  [28]

miR-92a Pig SMAD7 Promoted GC apoptosis;  [35]

Let-7 g Pig MAP3K1; TGBR1; IGF1R Inhibited SMAD7 and promoted apoptosis;  [36, 37]

miR-15a Human – Induced GC and FGCs apoptosis;  [38]

miR-125a Mice STAT3 Promoted progesterone and testosterone release  [39]

miR-320 Mouse E2f1-Sf-1 Enhanced cleaved caspase-3 and promoted FGC apoptosis  [40]

miR-126 Pig FSHR Inhibited the synthesis of E2 and proliferation of FGC  [41]

miR-378 Porcine CYP19A1 Inhibited FSHR and induced FGC apoptosis;  [42]

miR-224 Mice TGF-1; Decreased E2 production;  [43]

SMAD4 Enhanced TGF-1 induced and FGC proliferation;  [44]

miR-125b Yak BMPR1B Regulated apoptosis of FGC;  [45]

miR-1275 Pig LRH-1 Promoted early apoptosis of FGCs;  [46]

miR-503/351/322 cluster Mouse AMAG Reduced the activity of mitochondria in FGCs;  [47]

miR-22 Mice SIRT1 Suppressed SIRT1 and inhibited FGCs apoptosis;  [48]

miR-141-3p Rat DAPK1 Inhibited apoptosis in rat ovarian GCs;  [49]

miR-145 Human IRS1 Regulated negatively FGC proliferation;  [50]

Mice KLF4 Protected FGCs against oxidative stress-induced apoptosis  [50]
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Xu et al. as miR-378 [42]. In contrast, miR-133b enhances 
the synthesis of ovarian estradiol by targeting Foxl2, a 
transcriptional regulator that represses the expression of 
StAR and CYP19A1 [58]. By targeting Foxl2, miR-133b 
promotes the biosynthesis of estradiol, thereby facilitat-
ing the production of this hormone in the ovary [58].

Apart from controlling estradiol production, miRNAs 
also play a role in regulating the release of estradiol [59]. 
In ovarian GCs, enhancement of estradiol happened by 
the release of miR-383 that inhibits RBMS1 [59]. How 
this is accomplished by regulating RBMS1 mRNA stabil-
ity, which in turn affects granulosa cell steroidogenesis 
by rendering c-Myc inactive [59]. In addition, miR-378 
and miR-423-5p target the CYP19A1 mRNA and are 
important in controlling estradiol production [59]. They 
decrease the protein content and enzyme activity of 
CYP19A1, thereby exerting an inhibitory effect on estra-
diol synthesis. These regulatory mechanisms have been 
observed in newborn piglets [59].

Sirotkin et  al. conducted a study that revealed sev-
eral miRNAs’ role in controlling reproductive functions 
[38]. They identified a set of 36 miRNAs that inhibited 
the release of progesterone in granulosa cells [38]. Con-
versely, they found that 16 miRNAs promoted progester-
one release [38]. Additionally, the research found that the 

following microRNAs were implicated in the inhibition 
of testosterone production in granulosa cells: mir-108, 
mir-122, let-7a, let-7b, let-7c, miR-16, miR-17-3p, miR-
24, miR-25, and miR-26a [38]. These findings emphasize 
the diverse regulatory effects of particular miRNAs on 
the release of reproductive hormones in the ovary [59].

MiRNA in ovarian diseases
Endometriosis
A benign inflammatory condition known as endome-
triosis affects 10% of reproductive-aged women. Hormo-
nal, immunological, and genetic factors contribute to its 
etiology [51]. Endometriosis is diagnosed when stroma 
and functioning endometrial glands are discovered in 
locations other than the uterus, such as the ovaries, 
pelvis, and rectovaginal septum [60]. Current evidence 
has shown molecular defects in endometrial cells, with 
miRNA potentially acting as an endometriosis biomarker. 
Several dysregulated miRNAs have been directly linked 
to the disease’s pathogenesis (Table 2) [6].

Haikalis et  al. assessed six distinct miRNAs in endo-
metriosis lesions, revealing distinct expression profiles 
for each type of lesion [52]. There were noticeable differ-
ences in the expression patterns of the microRNAs miR-
10a, miR-10b, miR-21, miR-9, miR-204, and miR-424 

Table 2  miRNA expression profiles in endometriosis

List of MiRNAs Species Targets Function Ref

miR-424 Human PI3K/AKT Induced cell proliferation and angiogenesis  [52, 61]

miR-9; miR-21 Human BCL2; BCL2L11; PTEN; PDCD4 Anti-apoptosis; tumor suppressors

miR-200b Human ZEB1; ZEB2 Increased cell invasion and migration  [51, 53, 62]

miR-145 Human - Promotes apoptosis and inhibits cancer cell invasion and metastasis

miR-196B Human HOXA9; HOXA10 Angiogenesis

miR-135a Human HOXA10 Suppressed genes for implantation  [56]

miR-34 Human KRAS; BCL6 Suppressed tumor growth  [58]

miRNA let-7 Human KRAS Cell differentiation and inhibit cellular reprogramming;  [11, 57]

miR-125b Human BMPR1B Control apoptosis and cellproliferation;  [63, 64]

miR-145 Human VEGFA; EGFR2; PTEN; CXCR4 Inhibit cell proliferation and invasiveness  [65]

miR-200 Human ZEB1; ZEB2 Maintain epithelial status  [54, 66]

miRNA let-7 Human KRAS; CYP19A1 Suppressed tumor growth  [59]

miR-451 Mouse WnT/WNT Pre-implantation embryogenesis  [67]

miR-15b; miR-16 Human VEGF-A; COX-2 Pro-angiogenic  [68]

miR-141; miR-200c Human TGF-beta; ZBI Promotes invasion of cancer cells  [69]

miR-15b; miR-16 Human BCL2 Anti-apoptotic protein  [70]

miR-126 Human VEGF; FGF Neovascularization  [71]

miR-126 Human EGFL7 Induce migration of endothelial cell during neovascularization  [72]

miR-199 Murine COX-2 Affected to implantation  [73]

miR-20a Mouse CCND1 Epithelial cell proliferation  [74]

miR-196b Human BCL-2 Cell Proliferation and anti-apoptotic  [75]

miR-503 Human Cyclin D1; VEGF-A; BCL-2 Proliferation and anti-apoptotic, neovascularization, extracellular 
matrix contractility

 [76]
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according to the various types of lesions. The most often 
downregulated miRNA in endometriosis was miR-200b 
[52]. An essential step in endometriosis, the epithelial-
mesenchymal transition (EMT) involves this microRNA 
[53, 54]. Other miRNAs were up- or downregulated in 
endometriotic lesions, and also involved in endometri-
otic lesion processes, angiogenesis, cell proliferation, 
adhesion, and invasion [53].

Endometriosis can cause diminished fertility and a 
shortened reproductive window through factors like 
disrupted folliculogenesis, poor oocyte quality, abnor-
mal follicular development, and increased ROS lev-
els [55]. Endometriosis-related infertility is associated 
with changes in microRNAs that affect genes such as 
HOXA10, aromatase, progesterone receptors, matrix 
metalloproteinases (MMPs), and alphaV beta 3-integ-
rin [56]. Upregulation of miR-135a/b in endometrio-
sis-affected women leads to repression of HOXA10, a 
transcription factor crucial for endometrial receptiv-
ity. This illustrates an early instance where dysregulated 
miRNA in endometriosis correlates with implantation 
failure [56].

One hallmark of endometriosis is progesterone resist-
ance, which is aided by microRNAs such as the let-7 
family, miR-29c, miR-125b, miR-135a/b, miR-194, and 
miR-196a [6]. This resistance disrupts essential mecha-
nisms like endometrial cell decidualization, affecting tar-
gets like FKBP4, PGR, and MMP26, thereby impairing 
fertility potential [6]. As a result of its negative regula-
tion of Ras oncogenes, the Let-7 family—the first human 
miRNA to be discovered—regulates cell differentiation 
and acts as a tumor suppressor. Endometriosis and sev-
eral malignancies are associated with its downregula-
tion [77]. In severe endometriosis, polymorphisms at the 
KRAS gene’s let-7 binding site increase, leading to higher 

KRAS mRNA and protein levels [42, 78]. Let-7 family is 
involved in estrogen biosynthesis and can be inhibited by 
aromatase inhibitors [79].

Enhancement of angiogenesis and anti-apoptotic pro-
cess have been suggested as potential links between the 
pathophysiology and progression of endometriosis [80]. 
During embryonic development in zebrafish, MiR-126 
controls the response of endothelial cells to VEGF, lead-
ing to a decrease in vascular integrity and bleeding [79]. It 
represses negative VEGF pathway regulators, potentially 
influencing vascular integrity and function [79]. Mir-126 
is also thought to affect the EGFL7 function which limits 
the endothelial cells’ spatial distribution to control their 
migration [79]. Endometriotic cyst stromal cells also 
showed disruption in the angiogenesis process through 
DNA hypermethylation in miR-503, which interacts with 
cyclin D1, BCL-2, Ras homology A, and VEFG-A, among 
others, and contributes to ECM contractility, angiogen-
esis, resistance to apoptosis, and proliferation [79].

Ovarian cancer
Dysregulation of miRNAs can disrupt their target genes’ 
expression, thereby contributing to the onset of cancer 
development [81] (Table  3). Genetic abnormalities like 
chromosomal deletions, rearrangements, and muta-
tions, together with epigenetic modifications, are among 
the pathways that might lead to this misexpression [81]. 
Furthermore, abnormalities in transcription and post-
transcription also play a major role in the development 
and advancement of ovarian cancer [81]. MiRNA deregu-
lation is influenced by factors like epigenetic changes, 
chromosome rearrangements, and genomic copy number 
alteration [82].

There is great promise for miRNAs as clinical indica-
tors for the early detection of OC. If miRNA is to be used 

Table 3  MiRNAs expression profiles in ovarian cancer

Downregulated Ref Upregulated Ref

miR-199a, miR-125b1  [83] miR-18  [84]

let-7b  [84] miR-93  [82]

miR-199, miR-140, miR-145, miR-125b  [85] miR-519a  [86]

miR-155, miR-127, and miR-99b  [14] miR-181d  [87]

miR-31  [86] miR-30c, d and miR-30e-3p  [88]

miR-9–1, miR-9–3, miR-107, miR-1258, and miR-130b  [89] miR-191-5p, miR-206, miR-320a, miR-548-3p, miR-574-3p  [90]

miR-484, miR-642, and miR-217,Let-7i  [91–93] miR-22, miR-106, miR-451  [94]

miR-143, miR-34b, miR-140-3p, miR-422b  [90] miR-20a  [95]

miR-34a  [96] miR-1274a, miR-625-3p, miR-720  [97]

hsa-miR-135, 150, − 340, 625, 1908, 
187, − 96, − 196b, − 449c, and − 1275

 [98] miR-192/215 cluster  [99]

miR-9–2, miR-107, miR-130b  [100] miR-375 and miR-1307  [101]

miR-4443 and miR-5195-3p  [102] miR-200c-3p, miR-221-3p, miR-21-5p, and miR-484  [103]
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as a biomarker for the early diagnosis of ovarian cancer, it 
has to have a specificity of 99.6%, a sensitivity of 75%, and 
a positive predictive value of 10% [104]. A research that 
looked at the diagnostic accuracy of miRNAs in patients 
with stage I high-grade serous ovarian cancer discov-
ered that some miRNAs were far more accurate than 
the standard marker, CA-125, with an area under the 
curve (AUC) of 0.99 [105]. The model showed effective-
ness across different disease stages with higher sensitivity 
in borderline tumors [105]. Song et  al. [106] discovered 
that ovarian cancer patients had lower serum miR-26b 
expression and greater miR-21 expression, which is 
important for diagnosing OC and substantially correlates 
with clinical stage, lymph node metastases, and a 3-year 
survival rate. The three microRNAs (miR-200a, miR-
200b, and miR-200c) were identified in a comprehensive 
study of ovarian cancer biomarkers by Cui et  al. [107]. 
Likewise, Halvorsen et al. [108] also showed miR-200a-3p 
and 200c-3p as a biomarker for epithelial OC detection 
and suggested six more miRs that substantially showed a 
link between prognosis and survival.

Alterations in the levels of miRNA expression can 
affect the cancer aggressivity by affecting aspects like 
migration, chemoresistance, and metastasis [109]. The 
expression patterns of microRNAs (miRNAs) in normal 
and malignant samples are different [109]. As ovarian 
cancer progresses, miRNA dysregulation changes the 
expression of certain genes; for example, miR-141 levels 
rise with advanced illness, but miR-200c levels fall; this 
suggests that higher levels of miR-200c indicate longer 
survival times and lower levels of miR-141 indicate better 
survival rates [109, 110].

Dysregulation of miRNAs in blood (exosomes) could 
improve early ovarian cancer diagnosis and prognosis. 
Both bodily fluids and tissue specimens contain miRNAs; 
however, tissue samples are only valuable after the early 
diagnosis of OC [109]. Blood-based circulatory miRNA 
is less invasive for diagnosis but has low abundance 
[109]. Prior to their clinical use, tissue-based miRNA and 
serum/plasma-based miRNA must be distinguished. To 
completely comprehend their roles, therapeutic poten-
tial, and usefulness as diagnostic or prognostic biomark-
ers in OC, additional investigation is required, despite 
the identification of numerous miRNAs with dysregu-
lated patterns [109].

PCOS
Androgen excess and ovarian dysfunction define poly-
cystic ovarian syndrome (PCOS), being the most preva-
lent endocrine disorder in reproductive-aged women 
globally [20]. Diagnosis requires at least two criteria: 
chronic anovulation, hyperandrogenism, and poly-
cystic ovaries, noting that other diagnoses mimicking 

PCOS features must be excluded [111]. On a global 
scale, 8–13% of women of childbearing age have this ill-
ness, with an additional 70% going unidentified [112]. 
Insulin resistance, excessive hair growth, difficulty con-
ceiving, irregular ovulation, weight gain, high blood 
pressure, cancer, and depressive symptoms are some of 
the additional health conditions that may arise due to 
this disorder [112]. Consequently, in order to minimize 
potential long-term health consequences, it is vital 
that women diagnosed with polycystic ovary syndrome 
(PCOS) get appropriate treatment measures as soon as 
possible.

New evidence suggests that specific microRNA expres-
sion levels differ between healthy persons and women 
with polycystic ovary syndrome [113, 114] (Table  4). 
These observations suggest that miRNAs could poten-
tially have significant involvement in the onset and pro-
gression of PCOS [113, 114]. Granulosa cells have been 
shown to have both elevated proliferation and apop-
totic rates in relation to a large number of miRNAs that 
exhibit variable expression. These results may be ration-
ally explained, even if they seem to be inconsistent at 
first. Potentially, the transformation of primordial fol-
licles into primary follicles is responsible for the surge 
in primary follicles [115]. Table  4 shows that aberrant 
miRNA expression may affect cell proliferation, apopto-
sis, steroidogenesis, folliculogenesis, glucose metabolism, 
and insulin sensitivity, all of which may play a role in the 
pathogenesis of polycystic ovary syndrome [115]. Fur-
thermore, circulating microRNAs may serve as poten-
tial biomarkers for distinguishing PCOS patients from 
healthy women [115].

As a modulator of the insulin-IGF-1, Wnt, and Akt 
signaling pathways, the klotho protein has recently 
emerged as a promising therapeutic target for polycys-
tic ovary syndrome (PCOS). Researchers discovered that 
granulosa cell miR-129a-5p and miR-126-5p expression 
were substantially downregulated in PCOS patients and 
DHEA-induced PCOS animals [115]. It is believed that 
aberrant folliculogenesis and metabolic problems in pol-
ycystic ovary syndrome (PCOS) are caused by granulosa 
cell death, and this discovery suggests that klotho plays a 
role in this process [115]. Reducing klotho gene expres-
sion in PCOS GCs increased cell proliferation and miti-
gated insulin’s anti-apoptotic effects [115].

In a comparative study of miRNAs, MiR-29a-5p, a 
recently discovered miRNA, has been found to be a supe-
rior diagnostic biomarker, demonstrating a significantly 
higher AUC value of 0.95, and is associated with meta-
bolic disorders and cancers, involved in regulating cell 
growth, differentiation, and proliferation [132]. There-
fore, assessing the expression level of miR-29a-5p holds 
greater clinical significance compared to other miRNAs, 
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making it a more valuable tool for diagnostic purposes 
[132].

Conclusion and future direction
MicroRNA, a subset of small RNAs, accounts for vari-
ous biological pathways involved in folliculogenesis and 
related diseases. One way it works is by blocking the 
translation of certain messenger RNAs. A number of bio-
logical processes, including angiogenesis, cell adhesion, 
invasion, apoptosis, and proliferation, have been shown 
to rely on microRNAs (miRNAs). Atresia and follicular 
development are both thought to be impacted by certain 
miRNA clusters and families. In the early phases of fol-
licular atresia, relative to healthy follicles, the expression 
of this family of miR-lets is decreased, indicating differ-
ential expression during follicular atresia. Through their 
targeting of hormone receptors and their influence on 
hormone production and release, microRNAs (miRNAs) 
regulate ovarian steroid hormones.

Over the last 20 years, scientists have learned a great 
deal about miRNAs and their roles in gene expression 
and cell cycle control. Alterations in miRNA expression 
levels can impact cancer aggressivity and contribute 

to various gynecological disorders such as PCOS and 
endometriosis, impacting various molecular processes. 
To conclude, It appears that microRNAs hold potential 
as a diagnostic biomarker and enable more effective 
treatment potential as the future therapeutic targets for 
the diseases. Further exploration of functional studies 
on miRNA and its role in targeting specific mRNA will 
be needed with several notes.

Recent studies regarding microRNAs in ovarian dis-
orders are still conducted on a relatively small scale. 
The limited sample sizes compromise the generaliz-
ability of findings, hindering the ability to extrapolate 
results to the broader population of individuals with 
ovarian disorders. Selection bias and insufficient sta-
tistical power further challenge the reliability of these 
studies, potentially leading to overlooked associations 
and biased conclusions. Confounding variables, pub-
lication bias, and technical variability in laboratory 
methodologies add layers of complexity, requiring 
researchers to approach findings with a critical lens. 
Recruitment bias may happen in this case and may 
affect the external validity of the findings and limit the 
applicability to different patient groups.

Table 4  MiRNAs expression profiles in PCOS

List of MiRNAs Species Targets Function Ref

miR-29a-5p Human (GCs) Klotho gene Associated with elevated expression of the klotho 
gene in ovarian granulosa cells of PCOS patients.

 [116]

miR-126-5p Human, rat (GC) Klotho-associated signaling Linked to the cellular apoptosis  [116]

miR-29a-3p Human STARD3 and androgen receptor Steroid production and action  [117]

miR-320 Human STARD3 and androgen receptor Correlated with alanine-amino transferase and fasting 
glucose in PCOS patients

 [117]

let-7b Human (Serum) Activin receptor I and Smad2/3 Linked to folliculogenesis  [118]

miR-30a Human (FF) FOXL-2 Ovarian development  [119]

miR-92a Human IRS-2, GATA6 Related to androgen biosynthesis in theca cells  [120]

miR-483-5p Human Notch3, MAPK3 Connected to cellular proliferation and cell death  [121]

miR-93 Human (GC) TGFBR2, SMAD7, AR binding, 
GLUT4, CDKN1A

Associated with insulin resistance and the proliferative 
condition of GCs in PCOS

 [49]

miR-93 Human (Ovarian tissue) GLUT 4, MCM7 Related to insulin resistance  [122]

miR-93 Human (Granulose cell) CDKN1A Promote cell proliferation  [123]

miR-132 Human (FF) HMGA2 Promote estradiol secretion  [124]

miR-145, miR-320 Human (Granulose cell) IRS1 Suppress cell proliferation  [125]

miRNA-200b, miRNA-429 Human (Serum) - Associated with the pituitary control of ovulation 
in humans.

 [126]

miR-233 Human (Adipose tissue) GLUT4 Associated with insulin resistance  [127]

miR-320 Human IRS-1 Reduce insulin resistance in individuals with PCOS 
by adjusting the ERK1/2 signaling pathway regulated 
through IRS-1.

 [128]

miR-320 Human (FF/GC) E2F1, SF-1 Slow down the cell growth rate and the synthesis 
of estradiol.

 [129]

miR-509-3p Human (Cumulus cells) MAP3K8 Enhanced release of estradiol  [130]

miRNA-592 Human LHCGR​ Restrict cell survival and progression through the cell 
cycle.

 [131]
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Several contradictory findings in the recent studies 
can be due to various factors. There are several poten-
tial sources of discrepancies, including study design, 
patient diversity, and microRNA measurement tech-
niques. Additionally, the limited exploration of miRNA 
networks and interactions among multiple miRNAs, 
temporal variability, and validation challenges empha-
size the need for more comprehensive and well-pow-
ered research.

To address these limitations, future research endeavors 
should prioritize larger sample sizes, diverse participant 
cohorts, and standardized methodologies. Collabora-
tive efforts within the scientific community can facilitate 
the validation of findings across independent cohorts, 
improving the robustness and reliability of identified 
miRNA associations in ovarian disorders compared to 
independent cohorts alone. Last but not least, creating 
useful apps for the detection and treatment of ovarian 
diseases will depend on resolving these obstacles.
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