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Abstract 

Background Polycystic ovary syndrome (PCOS) is the most typical endocrine disorder affecting women worldwide. 
Although the etiology of PCOS is not fully understood, genetic factors are believed to play an essential role in its 
pathogenesis. Hence, this paper presents a review of the outcome of functional enrichment analysis of pathways 
associated with PCOS phenotypes for the identification of potential molecular targets as area of further research for 
therapeutic development for PCOS.

Method It is the implementation of comprehensive literature search in database including PubMed and Google 
Scholar and functional analysis of genes including the HSD3B2, PPARG, PPP1R3A, LMNA, and AMH and their roles in 
the metabolic pathways associated with PCOS.

Findings The genes including HSD3B2, PPARG, and LMNA emerged as the most important genes in relation to PCOS, 
suggesting that they could play key roles in regulating different aspects of PCOS pathogenesis. These findings provide 
valuable insights into the molecular mechanisms that underlie the complex condition of PCOS and highlight the 
potential of targeting these genes and their specific pathways as a promising approach to developing effective treat-
ments for PCOS.

Conclusion It was concluded that these exploring pathways associated with these genes could provide new insights 
into the genetic factors contributing to PCOS, and the study recommended further research on these targets for 
improving the health and quality of life women battling with PCOS worldwide.
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Background
Polycystic ovarian syndrome (PCOS) is a complex repro-
ductive disorder and a significant cause of infertility [1]. 
While its underlying genetic factors contribute to this 
endocrine condition, PCOS does not follow a clear pat-
tern of Mendelian inheritance [2]. Globally, anovulatory 
infertility cases are often associated with PCOS, pos-
ing challenges to the field of reproductive science [3]. In 
Africa, women bear the brunt of infertility stigma, lead-
ing to isolation and abandonment due to childlessness, as 
well as social, economic, and cultural burdens [4–6].

PCOS is not only a leading cause of infertility but also 
associated with various clinical conditions, including 
irregular menstrual cycles, hormone dysregulation, dia-
betes mellitus, endometrial cancer, and cardiovascular 
diseases [7]. This makes PCOS a significant challenge to 
family well-being and society worldwide. Although PCOS 
is strongly linked to genetics, it does not adhere to Men-
delian inheritance principles. Environmental exposures 
to xenobiotics have been suggested as potential causes, 
highlighting the need to understand the gene-phenotype 
relationships related to PCOS [8, 9].

Polycystic ovary syndrome (PCOS) is also relevant 
to the United Nations’ Sustainable Development Goals 
(SDGs). Specifically, it relates to SDG 3 (Good Health 
and Well-being), as it is a hormonal disorder that pro-
foundly affects the health and well-being of individu-
als. Women with PCOS face an increased risk of several 
adverse health outcomes, such as type 2 diabetes, car-
diovascular disease, and various types of cancer [11–13]. 
Understanding PCOS and developing more effective 
treatments can significantly improve the health and well-
being of affected individuals, thus contributing to the 
achievement of the SDGs.

Additionally, PCOS has implications for SDG 5 (Gen-
der Equality) as it primarily affects women and has a sig-
nificant impact on their reproductive health and overall 
well-being, particularly in Africa, where childlessness 
stigmatizes women. Understanding PCOS and its effects 
on women’s health can promote gender equality and 
support women’s right to access quality healthcare. Fur-
thermore, PCOS can be associated with SDG 11 due to 
environmental and lifestyle factors prevalent in urban 
areas, such as the risk of exposure to endocrine-disrupt-
ing chemicals (EDCs) and sedentary behavior, which 
are reported to contribute to the incidence of PCOS 
[14, 15]. Studying PCOS can lead to the development of 
more accurate diagnostic tools and effective treatments 
for women with the condition. A better understanding 
of PCOS and its impact on reproductive health can con-
tribute to improved family planning, thus controlling the 
global population growth rate and supporting sustainable 
development. Therefore, by addressing the underlying 

causes and impacts of PCOS, it is possible to promote a 
more sustainable and equitable world.

Etiology of PCOS with a focus on genetic 
and environmental factors contributing 
to the development of the syndrome
PCOS is a common case of infertility across the world, 
and between 5 and 10% cases of infertility diagnosis have 
been reportedly linked with its occurrence in different 
parts of the world including the developing countries [1]. 
In Nigeria, about 20% cases of infertility has been linked 
with PCOS, while about 75% cases of the anovulatory 
infertilities have been linked with it. These are indica-
tions that PCOS could be referred to as the chief execu-
tive being one of the most common forms of infertility 
in the country [2, 3]. Unfortunately, the pathophysiol-
ogy of PCOS is not clear, although genetic factors have 
been verified through genome-wide association studies. 
Hence, there is a need to investigate possible functional 
roles of these genetic complications in different popula-
tion ancestries to move toward developing effective ther-
apeutic measures [4]. PCOS is also a metabolic disorder 
reportedly linked with oxidative stress which could relate 
to the activities of mitochondria genomic regulations 
and maintenance [5]. Clinical trial registration numbers 
and information regarding ethical approval should be 
included if applicable.

Polycystic ovary syndrome (PCOS) is a complex and 
heterogeneous endocrine disorder affecting 5–15% 
of reproductive-aged women which the exact cause is 
not fully understood, but it is believed to result from a 
combination of genetic and environmental factors [5]. 
There are research studies which indicate that there is a 
genetic component to PCOS as some studies have found 
that there is an increased risk of developing it among 
first-degree relatives of women with the condition [6–8]. 
Additionally, genome-wide association studies (GWAS) 
have identified several genetic variants that are associ-
ated with PCOS, including variants in genes involved in 
insulin resistance, inflammation, and androgen produc-
tion [9]. Although the specific genetic factors contrib-
uting to PCOS are not yet fully understood, there are 
several genes identified for playing a possible role in the 
occurrence of the disease. Mutations in genes involved in 
insulin resistance have been linked to an increased risk 
of PCOS, as insulin resistance is a common feature of the 
condition [10].

However, while genetics may increase the risk of devel-
oping PCOS, it is not the only factor; there are other fac-
tors including environmental-linked factors, such as diet, 
exercise, and stress, which may also play a role in the 
development and severity of the condition [11]. There-
fore, while there could be a genetic dimension to PCOS, 
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it is important to consider both genetic and environmen-
tal factors when assessing and managing the condition. 
This made PCOS a complex endocrine disorder affecting 
many women of reproductive age to study since the exact 
cause of PCOS is not yet fully understood, and a multi-
factorial condition could be influenced by both genetic 
and environmental factors.

Genome-wide association studies (GWAS) are a type 
of study that examines the entire genome of individuals 
to identify genetic variants that may be associated with a 
particular disease or trait. In the case of PCOS, the appli-
cation of GWAS has identified several genetic variants 
that are associated with the condition, and one of the 
most consistent among them is the association between 
PCOS and genes involved in insulin resistance, which 
occurs when the body’s cells become less responsive to 
the hormone insulin causing high levels of insulin in the 
blood [4]. This contributes to the development of PCOS 
because insulin can stimulate the ovaries to produce 
more androgens, which can disrupt the menstrual cycle 
and lead to the anovulation which is a symptom of PCOS.

Meanwhile, there are other several genes and genetic 
factor that could get involved in insulin signaling and 
glucose metabolism, and through this pathway, there 
could be increasing development of PCOS, such as 
the expression of gene for insulin receptor substrate 1 
(IRS1). In addition to insulin resistance, inflammation 
is another metabolic activity believed to be playing a 
role in the development of PCOS. There are also studies 
which have found that women with PCOS have higher 
levels of inflammatory markers in their blood compared 
to women without the condition. Some of the genetic 
variants that have been associated with PCOS are also 
involved in immune function and inflammation, includ-
ing the genes for tumor necrosis factor-alpha (TNF-
alpha) and interleukin-6 [12].

However, the production of male reproductive hor-
mone, androgen, is a hallmark feature of PCOS, and this 
has been confirmed through GWAS which identified 
genetic variants in genes involved in androgen synthesis 
and metabolism, such as the gene for the luteinizing hor-
mone receptor (LHCGR) and the gene for 17-hydroxys-
teroid dehydrogenase type 4 [13]. These genetic variants 
may influence the production and metabolism of andro-
gens in the ovaries, which can contribute to the develop-
ment of PCOS symptoms. These valuable insights into 
the genetic basis of PCOS have contributed to identifi-
cation of the potential biological pathways that could be 
targeted for the treatment of the condition. However, it 
is important to note that the genetic variants identified 
in GWAS only explain a small proportion of the overall 
heritability of PCOS, and that other factors, such as epi-
genetics and environmental factors, are also likely to play 

a role in the development of the condition, which is why 
functionally some of the pathways have to be elucidated. 
While GWAS studies are valuable for identifying genetic 
variants associated with PCOS, complementary func-
tional genomics and transcriptomics approaches are nec-
essary to gain a deeper understanding of the functional 
genetic differences underlying the condition which is why 
this paper focus on identifying molecular targets that 
could be exploited for better understanding of the PCOS.

As parts of the etiology of PCOS, environmental fac-
tors such as diet, physical activity, and exposure to 
endocrine-disrupting chemicals (EDCs) have been impli-
cated in the development of PCOS [14]. The consump-
tion of high-calorie diets rich in carbohydrates have been 
reported to contribute to insulin resistance and hyperin-
sulinemia, which are often common in women diagnosed 
with PCOS. Also, exposure to EDCs such as bisphenol A 
(BPA) and phthalates, because of their potential capac-
ity of causing endocrine disruption, can contribute to the 
development of PCOS through hormonal dysregulation 
which is a hallmark feature of PCOS [15]. This is often 
accompanied with elevated levels of androgens, such as 
testosterone, hirsutism (excess hair growth), and acne 
which is a skin condition in adolescent characterized by 
red pimples on the skin, especially on the face, due to 
inflamed or infected sebaceous glands in women. These 
group of young women may also be experiencing some 
irregularities in their menstrual cycles or anovulation 
(lack of ovulation) due to disruptions in the hypotha-
lamic-pituitary-ovarian axis. This has also been report-
edly linked with insulin resistance and hyperinsulinemia 
which are common in women with PCOS and can con-
tribute to the hormonal dysregulation those women. 
Metabolic dysregulation, including insulin resistance and 
hyperinsulinemia, is common in women with PCOS, and 
insulin resistance can contribute to the elevated andro-
gen levels in PCOS and can also lead to metabolic com-
plications, such as type 2 diabetes and cardiovascular 
disease. The PCOS is a complex disorder resulting from a 
combination of genetic and environmental factors sand-
wich by hormonal and metabolic dysregulation as hall-
mark features of the disorder. Hence, the understanding 
of the underlying mechanisms of PCOS is essential for 
developing effective treatments and improving outcomes 
for women with the disorder.

Mendelian genetics and inheritance of PCOS
Mendelian genetics is based on the laws of inheritance 
proposed by Gregor Mendel, which describe the way 
in which traits are passed down from one generation to 
another. According to the principles of Mendelian genet-
ics, a gene inherited from either parent segregates at an 
equal frequency, meaning that there is a 50–50 chance 
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that an individual will inherit the gene from either the 
mother or the father [16]. However, in some cases, genes 
may not follow Mendelian genetics, and whenever this 
happen, the genes may be inherited in a non-Mendelian 
fashion, such as those that are linked with or those that 
are controlled by multiple genes [17]. In such cases, the 
frequency of inheritance may deviate from the expected 
50:50 ratio, and the expression of the trait may be more 
complex than predicted by simple Mendelian genetics.

Additionally, there are some genetic disorders that 
could result from mutations in the DNA that affect the 
way in which genes are inherited [18]. For example, some 
genetic disorders are caused by dominant genes, which 
means that an affected individual only needs to inherit 
one copy of the mutated gene to develop the disorder 
[19]. Also, there are other genetic disorders not following 
the Mendelian inheritance that could be caused by reces-
sive genes, which means that an affected individual must 
inherit two copies of the mutated gene (one from each 
parent) to develop the disorder [19, 20]. In essence, while 
Mendelian genetics provides a useful framework for the 
understanding of inheritance of many traits, not all genes 
and genetic disorders follow the simple Mendelian pat-
terns of inheritance [21]. An example of such traits is the 
PCOS which does not follow the simple Mendelian pat-
terns of inheritance and to understand the underlying 
mechanisms of the PCOS inheritance. Hence, it would be 
necessary to apply some other genetic approaches includ-
ing linkage analysis, GWAS, epigenetic, and functional 
analyses for better understanding of the condition from 
the genetic perspective.

Linkage analysis is a technique used in identification of 
genes that are physically located close together on a chro-
mosome and tend to be inherited together; this technique 
can be used to study complex traits that are influenced 
by multiple genes and can contribute to the identifica-
tion of candidate genes that may be involved in a trait of 
interest [22]. There is another approach known as GWAS 
which as to with study that involves comparing the DNA 
of people with a particular trait or disorder to the DNA 
of people without the trait or disorder. By looking for 
the differences in the DNA sequences between these two 
groups of people, researchers can identify genetic varia-
tions that are associated with the trait or disorder.

Epigenetic changes on the other hands are modifi-
cations to the DNA molecule that can influence gene 
expression and function, without changing the under-
lying DNA sequence, and it has been largely associated 
with environmental influences [23, 24]. The approach of 
studying epigenetic changes can help researchers under-
stand how environmental and other nongenetic factors 
can influence the expression of genes and contribute to 
the development of complex traits. Functional genetic 

analysis involves studying the effects of specific genes 
or genetic variations on the function of cells and organ-
isms. This can involve techniques such as gene editing 
or gene silencing, which can be used to modify or block 
the expression of specific genes to study their effects [25, 
26]. The application of these and other approaches could 
contribute to gaining a better understanding of the com-
plex inheritance patterns associated with the underlying 
genetic and epigenetic mechanisms involved in the devel-
opment of PCOS.

Metabolic pathways in PCOS: focus on metabolic 
pathways of insulin resistance, dyslipidemia, 
and inflammation and their associated genes
Metabolic dysregulation is a common feature of polycys-
tic ovarian syndrome (PCOS), involving a hormonal dis-
order that affects reproductive-age women [27]. Women 
with PCOS often exhibit insulin resistance characterized 
by difficulty using insulin to regulate blood sugar levels 
which can lead to high levels of insulin expression in the 
bloodstream which could consequently result to other 
range of metabolic and hormonal disturbances [28]. 
Hence, studying these metabolic dysregulations path-
ways in PCOS could be very important because it can 
facilitate better understanding of the underlying mecha-
nisms of the disorder which is still poorly understood. 
The studying of these metabolic dysregulation could also 
lead to identifying of the specific metabolic pathways that 
are disrupted due to PCOS which could also lead to the 
development of targeted and effective treatments for the 
disorder. Furthermore, studying these metabolic distur-
bances could facilitate gaining insights into the long-term 
health risks associated with the PCOS and could contrib-
ute to the development of strategies for prevention and or 
managing these complications [29, 30]. Finally, research 
into metabolic dysregulation in PCOS has the potential 
to improve the understanding of all the combined factors 
including genetic, environmental, and lifestyle factors 
associated with the disease.

Polycystic ovary syndrome (PCOS) is a complex condi-
tion that is characterized by a range of clinical, hormo-
nal, and metabolic features; although PCOS is typically 
classified as a single entity, recent research has suggested 
that there may be distinct subtypes of PCOS based on 
different underlying metabolic and hormonal  profiles47. 
The first proposed PCOS subtypes include the insulin-
resistant PCOS which is the subtype characterized by 
insulin resistance, leading to hyperinsulinemia and com-
pensatory hyperandrogenemia. Typically, women with 
this subtype of PCOS, there are high levels of insulin and 
testosterone, and they are at increased risk for type 2 dia-
betes and cardiovascular disease [31]. There is also post-
pill PCOS which is the subtype believed to be caused 
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using hormonal contraceptives, such as the combined 
oral pills, which can disrupt the normal hormonal bal-
ance in the body. While this has been reported, it has also 
been contested that what happened is not post-pill PCOS 
but rather just a myth that birth control pills cause PCOS 
due to a condition called post-birth control syndrome 
which was reported as a collection of symptoms that can 
occur in some people when they stop taking hormonal 
birth control pill [32]. Meanwhile, the proponents of the 
concept associated the habits of experiencing of irregular 
periods, skin inflammation, and excessive growth of dark 
or coarse hair in a male-like pattern such as excessive 
growth of hair on face, chest, and back even after discon-
tinuing taking of the hormonal contraceptives as PCOS. 
There is also what has been described as inflammatory 
PCOS which is a subtype reported to be associated with 
chronic low-grade inflammation as well as insulin resist-
ance and hyperandrogenemia [33]. It was reported that 
women with inflammatory PCOS may have elevated lev-
els of inflammatory markers, such as C-reactive protein 
(CRP), but may benefit from anti-inflammatory thera-
pies [34]. The C-reactive protein (CRP) is a protein that 
is produced by the liver in response to inflammation in 
the body; its levels can rise rapidly in response to tissue 
injury, infection, or other inflammatory processes and 
can be measured in the blood as a marker of inflamma-
tion. The CRP could serve as an important biomarker 
in a range of health conditions, including cardiovascu-
lar disease, autoimmune disorders, and infections, and 
within the context of polycystic ovary syndrome (PCOS), 
elevated levels of CRP have been observed in some 
women with the inflammatory subtype of PCOS, which 
is characterized by chronic low-grade inflammation [35]. 
Therefore, measuring CRP levels can help to identify the 
presence and severity of inflammation-induced PCOS 
and can be used to monitor the response to anti-inflam-
matory therapies.

There is also adrenal PCOS which is a subtype that is 
characterized by increased adrenal androgen produc-
tion, which can lead to high levels of dehydroepiandros-
terone sulfate DHEA-S and androstenedione. According 
to reports, women with adrenal PCOS may have fewer 
ovarian cysts and may not meet the diagnostic criteria 
for PCOS based on ultrasound findings but may still have 
elevated androgen levels and other symptoms includ-
ing insulin resistance, body weight changes, and hyper-
lipidemia. The DHEA-S is a hormone produced by the 
adrenal glands, which are small glands located on top 
of the kidneys. DHEA-S is a sulfated form of the hor-
mone DHEA and is the most abundant circulating ster-
oid hormone in the body. DHEA-S levels are typically 
highest in young adulthood and decline with age, but it 
is involved in the production of other hormones, such as 

testosterone and estrogen, and plays a role in a range of 
physiological processes, including bone health, immune 
function, and cognitive function [36]. In the context of 
polycystic ovary syndrome (PCOS), elevated levels of 
DHEA-S are often observed in women with the adrenal 
subtype of PCOS, which is characterized by increased 
adrenal androgen production in addition to DHEA-S; 
there could be other adrenal androgens elevation such 
as androstenedione which may also be elevated. Hence, 
measuring the DHEA-S levels could also serve as a lead 
in the identification of the presence of adrenal androgen 
excess which may be used to differentiate the adrenal 
subtype of PCOS from other subtypes.

Finally, one of key genes associated with insulin resist-
ance in PCOS is the insulin receptor substrate 1 (IRS1) 
gene which plays a crucial role in insulin signaling; it is 
essential for maintaining normal glucose metabolism in 
the body [37]. Dysregulation of insulin signaling path-
ways can lead to insulin resistance, a key metabolic 
abnormality associated with PCOS [38]. Insulin resist-
ance refers to a diminished response of target tissues, 
such as skeletal muscle, adipose tissue, and the liver, to 
the actions of insulin. This impaired response can result 
in elevated levels of circulating insulin, known as hyper-
insulinemia, as the body tries to compensate for the 
reduced effectiveness of insulin.

Insulin resistance is closely linked to metabolic distur-
bances observed in PCOS, including dyslipidemia and 
inflammation. This is connected to dyslipidemia which 
is the abnormal lipid profiles characterized by increased 
levels of triglycerides, low-density lipoprotein cholesterol 
(LDL-C), and decreased levels of high-density lipoprotein 
cholesterol (HDL-C). Insulin resistance contributes to 
dyslipidemia by impairing the clearance of triglyceride-
rich particles and promoting lipolysis in adipose tissue, 
leading to elevated levels of circulating free fatty acids. 
These alterations in lipid metabolism contribute to the 
development of atherogenic dyslipidemia, increasing the 
risk of cardiovascular disease in women with PCOS [39].

Furthermore, insulin resistance can also induce a state 
of chronic low-grade inflammation in PCOS. Adipose 
tissue, particularly visceral adipose tissue, produces vari-
ous pro-inflammatory cytokines and adipokines, such as 
tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-
6), and leptin. These inflammatory molecules contribute 
to a state of systemic inflammation, which further impairs 
insulin signaling and exacerbates insulin resistance [40]. 
In turn, insulin resistance can promote adipose tissue 
dysfunction, leading to a perpetuating cycle of inflam-
mation and metabolic dysfunction in PCOS. The role of 
IRS1 in insulin signaling is crucial in this context. Vari-
ations in the IRS1 gene can affect the efficiency of insu-
lin signaling pathways, leading to reduced downstream 



Page 6 of 16Sikiru et al. Middle East Fertility Society Journal           (2023) 28:16 

signaling cascades and impaired glucose uptake in target 
tissues. This diminished insulin sensitivity contributes to 
insulin resistance and the subsequent metabolic distur-
bances observed in PCOS.

Therefore, an understanding of the intricate interplay 
between IRS1, insulin signaling, and metabolic pathways 
related to insulin resistance, dyslipidemia, and inflamma-
tion is essential for unraveling the complex pathophysiol-
ogy of PCOS. Targeting these pathways through precision 
medicine approaches may offer potential therapeutic 
strategies for managing PCOS, such as the development 
of novel insulin sensitizers or targeted interventions 
aimed at improving dyslipidemia and reducing chronic 
inflammation. Further research is needed to elucidate the 
precise mechanisms underlying the role of IRS1 in PCOS 
and to explore the therapeutic potential of targeting this 
pathway for personalized treatments in the future.

Functional enrichment analysis of pathways 
associated with PCOS phenotypes
Polycystic ovary syndrome (PCOS) is a common endo-
crine disorder affecting reproductive-aged women 
worldwide; it is characterized by a wide range of symp-
toms, including irregular menstrual cycles, ovarian cysts, 
hyperandrogenism, and insulin resistance. However, the 
molecular mechanisms underlying the pathophysiology 
of PCOS are not fully understood; because of this, func-
tional enrichment analysis is a powerful tool that can be 
used to identify pathways and gene having differential 
regulation in PCOS patients which could also be playing 
roles in its management. By analyzing the enrichment of 
specific functional categories within sets of genes associ-
ated with different PCOS phenotypes, researchers could 
gain insight into the underlying molecular mechanisms 
and selection of potential therapeutic targets for this 
complex disorder. In this context, functional enrichment 
analysis of pathways associated with PCOS phenotypes is 
being carried out and reported in this study.

Polycystic ovary syndrome (PCOS) is a complex endo-
crine disorder with a complex genetic basis, but genetic 
studies have identified several genes and genomic 
regions associated with PCOS, many of which remain 
poorly characterized. Some of these genes are listed in 
the Online Mendelian Inheritance in Man (OMIM), 
which is a database that provides information on genes 
and genetic disorders, including those associated with 
PCOS. In this study, a PCOS phenotype table was gener-
ated from the OMIM database (Table 1). The table pro-
vides a comprehensive summary of the known genetic 
factors involved in PCOS which can serve as a valuable 
resource for researchers interested in understanding the 
genetic underpinnings of this disorder. In this article, 
we will discuss the implications of these findings for 

our understanding of PCOS pathogenesis and potential 
diagnostic and therapeutic strategies. The genes gener-
ated through the PCOS phenotype were also functionally 
enriched to elucidate pathways that can serve as target 
for the PCOS understanding and treatment.

The autosomal recessive inheritance is a pattern in 
which an individual must inherit two copies of a defec-
tive gene, one from each parent, to develop a particular 
genetic disorder [41]. This means that both parents must 
carry one copy of the defective gene but do not show any 
symptoms of the disorder because they have one normal 
copy of the gene that can produce the necessary protein. 
However, when both parents pass on their defective gene 
to their offspring, the child inherits two defective copies, 
which results in the manifestation of the disorder. Auto-
somal recessive disorders are relatively rare, and many 
are caused by mutations in a single gene; examples of 
autosomal recessive disorders include sickle cell anemia, 
cystic fibrosis, Tay-Sachs disease, and phenylketonuria. 
In general, individuals with autosomal recessive disorders 
have a 25% chance of having an affected child with each 
pregnancy, a 50% chance of having a carrier child, and 
a 25% chance of having an unaffected, noncarrier child. 
Therefore, genetic counseling can help individuals who 
are carriers of autosomal recessive disorders to under-
stand the risks associated with having children and make 
informed decisions about marriage, number of children, 
and on termination of affected pregnancies. Testing can 
also be done to determine whether individuals are carri-
ers of certain autosomal recessive disorders.

The contiguous gene duplication or deletion syndrome 
(CGDS) is a type of genetic disorder in which multiple 
genes are involved; in CGDS, a segment of DNA contain-
ing multiple genes is either duplicated or deleted, lead-
ing to a range of clinical features [42]. The affected genes 
are located next to each other on the chromosome and 
are inherited together as a unit; the CGDS could also 
result from a variety of genetic mechanisms, including 
nonallelic homologous recombination, microdeletions 
or microduplications, and chromosomal translocations. 
The exact mechanism and location of the duplication or 
deletion will determine which genes are affected and the 
severity of the symptoms. The clinical presentation of 
CGDS can vary widely depending on the specific genes 
involved and the extent of the duplication or deletion. 
Some common features of CGDS can include intellectual 
disability, developmental delay, congenital abnormalities, 
growth and feeding problems, seizures, and behavioral 
issues. There are examples of CGDS including Williams 
syndrome, which is caused by a deletion of 26–28 genes 
on chromosome 7, and Potocki-Lupski syndrome, which 
is caused by a duplication of a segment of chromosome 
17 that includes about 20 genes. Other examples include 
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Table 1 Table of genes associated with polycystic ovary syndrome (PCOS) phenotypes from Online Mendelian Inheritance in Man 
(OMIM)

S/no Cytogenetic 
location

Genomic coordinates 
(from NCBI/GRCh38)

Gene/locus Phenotype Phenotype 
MIM number

Inheritance Phenotype 
map key

1 1p12 1:119414931–119423034 HSD3B2 Adrenal hyperplasia, 
congenital, due to 3-beta-
hydroxysteroid dehydroge-
nase 2 deficiency

201810 Autosomal recessive 3

2 1q22 1:156082573–156140081 LMNA, LMN1, EMD2, 
FPLD2, CMD1A, HGPS

Cardiomyopathy, dilated, 1A 115200 Autosomal dominant 3

3 1q22 1:156082573–156140081 LMNA, LMN1, EMD2, 
FPLD2, CMD1A, HGPS

Charcot-Marie-Tooth dis-
ease, type 2B1

605588 Autosomal recessive 3

4 1q22 1:156082573–156140081 LMNA, LMN1, EMD2, 
FPLD2, CMD1A, HGPS

Emery-Dreifuss muscular 
dystrophy 2, autosomal 
dominant

181350 Autosomal dominant 3

5 1q22 1:156082573–156140081 LMNA, LMN1, EMD2, 
FPLD2, CMD1A, HGPS

Emery-Dreifuss muscular 
dystrophy 3, autosomal 
recessive

616516 Autosomal recessive 3

6 1q22 1:156082573–156140081 LMNA, LMN1, EMD2, 
FPLD2, CMD1A, HGPS

Heart-hand syndrome, 
Slovenian type

610140 Autosomal dominant 3

7 1q22 1:156082573–156140081 LMNA, LMN1, EMD2, 
FPLD2, CMD1A, HGPS

Hutchinson-Gilford progeria 176670 Autosomal dominant 3

8 1q22 1:156082573–156140081 LMNA, LMN1, EMD2, 
FPLD2, CMD1A, HGPS

Lipodystrophy, familial 
partial, type 2

151660 Autosomal dominant 3

9 1q22 1:156082573–156140081 LMNA, LMN1, EMD2, 
FPLD2, CMD1A, HGPS

Malouf syndrome 212112 Autosomal dominant 3

10 1q22 1:156082573–156140081 LMNA, LMN1, EMD2, 
FPLD2, CMD1A, HGPS

Mandibuloacral dysplasia 248370 Autosomal recessive 3

11 1q22 1:156082573–156140081 LMNA, LMN1, EMD2, 
FPLD2, CMD1A, HGPS

Muscular dystrophy, con-
genital

613205 Autosomal dominant 3

12 1q22 1:156082573–156140081 LMNA, LMN1, EMD2, 
FPLD2, CMD1A, HGPS

Restrictive dermopathy 2 619793 3

13 1q32.2 1:209686179–209734929 HSD11B1, HSD11, 
HSD11L, CORTRD2

Cortisone reductase defi-
ciency 2

614662 Autosomal dominant 3

14 2q37.3 2:240586734–240599104 CAPN10, NIDDM1 Diabetes mellitus, noninsu-
lin-dependent 1

601283 3

15 3p25.2 3:12287368–12434344 PPARG, PPARG1, 
PPARG2, CIMT1, GLM1

Carotid intimal medial 
thickness 1

609338 3

16 3p25.2 3:12287368–12434344 PPARG, PPARG1, 
PPARG2, CIMT1, GLM1

Insulin resistance, severe, 
digenic

604367 Autosomal dominant 3

17 3p25.2 3:12287368–12434344 PPARG, PPARG1, 
PPARG2, CIMT1, GLM1

Lipodystrophy, familial 
partial, type 3

604367 Autosomal dominant 3

18 3p25.2 3:12287368–12434344 PPARG, PPARG1, 
PPARG2, CIMT1, GLM1

Obesity, severe 601665 Autosomal dominant; 
autosomal recessive; 
multifactorial

3

19 3p25.2 3:12287368–12434344 PPARG, PPARG1, 
PPARG2, CIMT1, GLM1

Obesity, resistance to 3

20 3p25.2 3:12287368–12434344 PPARG, PPARG1, 
PPARG2, CIMT1, GLM1

Diabetes, type 2 125853 Autosomal dominant 3

21 7q31.1 7:113876777–113919009 PPP1R3A, PPP1R3 Insulin resistance, severe, 
digenic

125853 Autosomal dominant 3

22 15q26.1 15:89664367–89679367 PLIN1, PLIN, FPLD4 Lipodystrophy, familial 
partial, type 4

613877 Autosomal dominant 3

23 19p13.3 19:2249323–2252073 AMH, MIF Persistent Mullerian duct 
syndrome, type 1

261550 Autosomal recessive 3

24 19p13.2 19:6900001–12600000 PCOS1, PCO1, PCO Polycystic ovary syndrome 1 184700 Autosomal dominant 2

25 Xq12 X:67544021–67730619 AR, DHTR, TFM, SBMA, 
KD, SMAX1, HYSP1

Androgen insensitivity 300068 X-linked recessive 3

26 Xq12 X:67544021–67730619 AR, DHTR, TFM, SBMA, 
KD, SMAX1, HYSP1

Androgen insensitivity, 
partial, with or without 
breast cancer

312300 X-linked recessive 3
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Smith-Magenis syndrome, caused by a deletion on chro-
mosome 17 that affects several genes, and 16p11.2 dele-
tion and duplication syndromes, which involve the loss 
or gain of several genes on chromosome 16. The diag-
nosis of CGDS typically involves genetic testing, such 
as chromosomal microarray analysis or next-generation 
sequencing, to identify the location and extent of the 
duplication or deletion. Management of CGDS involves 
addressing the specific symptoms and providing support-
ive care which may include therapies such as speech and 
occupational therapy, behavioral interventions, and med-
ical treatments for seizures, gastrointestinal problems, or 
other medical issues that may arise.

The cytogenetic location of the PCOS-associated genes 
(Table  1) showed that most of the genes are located on 
chromosomes 1 (1p12 and 1q22) and 19 (19p13.2 and 
19p13.3), respectively. These cytogenetic locations con-
tain a different set of genes, genetic variations, and regu-
latory elements that can have unique effects on cellular 
function and health outcomes. For example, the genes 
located in 1p12 have been associated with various medi-
cal conditions such as cancer, while the genes in 19p13.2 
and 19p13.3 have been linked to developmental disor-
ders and neurological conditions. The clinical relevance 
of each the cytogenetic location can vary depending on 
the genes and genetic variations present in that region. 
Although some genetic variations may be benign or 
have no known clinical significance, others can have sig-
nificant effects on an individual’s health and disease risk. 
In this study, the interactive effects of the genes in the 
cytogenetic locations 1p12, 1q22, 19p13.2, and 19q13.3 
were functionally enriched in reactome pathway and 
WikiPathway for better understanding of the pathways 
associated with PCOS (Table 2).

To identify the most important genes associated 
with PCOS with respect to their roles in the metabolic 
pathways associated with it, the STRING database was 
used to analyze the genes in Table 2 above, since they 
are known to be associated with PCOS. Specifically, 
there was an examination of the number, degree, and 

centrality of interactions among these genes, as well 
as the strength of the interactions. The information 
was then plotted bubble charts, to allow for easy visu-
alization of the relative importance of each gene with 
respect to PCOS. Based on this analysis, there was 
identification of the top genes with the highest number 
of interactions (Fig.  1) and the three most important 
genes associated with PCOS (Fig. 2), which could serve 
as potential molecular targets for better understanding 
and therapeutic development for the condition.

Polycystic ovary syndrome (PCOS) is a complex 
endocrine disorder affecting reproductive-age women 
worldwide. It is characterized by hormonal imbal-
ances, ovarian dysfunction, and various metabolic dis-
turbances. While the exact etiology of PCOS remains 
elusive, recent research has implicated several genes in 
its development and progression. Understanding the 
molecular pathways associated with PCOS and iden-
tifying potential therapeutic targets are crucial for the 
development of effective treatment strategies. In this 
study, part of efforts is to shed light on the intricate 
molecular mechanisms underlying PCOS by explor-
ing the role of specific genes in the manifestation of 
PCOS phenotypic traits. The findings focus on the 
genes including HSD3B2, PPARG, PPP1R3A, LMNA, 
and AMH, which have emerged as potential candidates 
associated with PCOS pathogenesis (Figs. 1 and 2).

HSD3B2 (3β-hydroxysteroid dehydrogenase 2) is 
involved in the biosynthesis of androgens and plays a 
crucial role in steroid hormone metabolism. Studies 
have shown that mutations or dysregulation of HSD3B2 
may lead to adrenal hyperplasia, resulting in the exces-
sive production of androgens, a hallmark characteristic 
of PCOS. The gene has to with androgens and primarily 
testosterone, which is an essential sex steroid hormone 
produced in testicular Leydig cells in men and in adre-
nal cortex and ovaries in women. The gene could act 
through the androgen receptor to regulate gene tran-
scription and exert rapid effects through interaction with 
membrane proteins or signaling molecules [43]. It has 

Phenotype mapping keys: 1, the disorder is placed on the map due to its association with a gene, but the underlying defect is not known; 2, the disorder was placed 
on the map by statistical methods; 3, the molecular basis of the disorder is known; 4, a contiguous gene duplication or deletion syndrome in which multiple genes are 
involved

Table 1 (continued)

S/no Cytogenetic 
location

Genomic coordinates 
(from NCBI/GRCh38)

Gene/locus Phenotype Phenotype 
MIM number

Inheritance Phenotype 
map key

27 Xq12 X:67544021–67730619 AR, DHTR, TFM, SBMA, 
KD, SMAX1, HYSP1

Hypospadias 1, X-linked 300633 X-linked recessive 3

28 Xq12 X:67544021–67730619 AR, DHTR, TFM, SBMA, 
KD, SMAX1, HYSP1

Spinal and bulbar muscular 
atrophy of Kennedy

313200 X-linked recessive 3

29 Xq12 X:67544021–67730619 AR, DHTR, TFM, SBMA, 
KD, SMAX1, HYSP1

Prostate cancer, susceptibil-
ity to

176807 Autosomal dominant; 
somatic mutation

3
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Table 2 PCOS-associated genes enriched with their respective metabolic pathways in KEGG pathway, Reactome pathway, and 
WikiPathway databases and corresponding OMIM phenotype IDs

Genes Description of the pathways OMIM phenotypes ID

HSD3B2 Steroid hormone biosynthesis 201810

Ovarian steroidogenesis

Cortisol biosynthesis and secretion

Mineralocorticoid biosynthesis

Glucocorticoid biosynthesis

Androgen biosynthesis

Metabolism of steroid hormone

Alternative pathway of fetal androgen synthesis

Peroxiredoxin-2 induced ovarian failure

HSD11B1 Steroid biosynthesis 614662, 601283

Cortisol synthesis and secretion

Ovarian steroidogenesis

Mineralocorticoid biosynthesis

Glucocorticoid biosynthesis

Androgen biosynthesis

Metabolism of steroid

LMNA Meiotic synapsis 115200, 605588, 181350, 616516, 610140, 
176670, 151660, 212112, 248370, 613205, 
619293

Familial partial lipodystrophy (FPLD)

Progeria-associated lipodystrophy

Overlap between signal transduction pathways contributing to LMNA 
laminopathies

PPARG Insulin resistance 609338, 604367, 601665, 125853

Growth hormone synthesis, secretion, and actions

Estrogen signaling pathway

Wnt pathway

Pathways in cancer

Estrogen dependent genes expression

Cellular response to stress

Energy metabolism

Androgen receptor signaling pathways

Male infertility

Integrated breast cancer pathways

PP1R3A Insulin resistance 125853

Insulin signaling pathway

Type 2 diabetes

Ovarian steroidogenesis

Oocytes meiosis

Prolactin signaling pathway

Oxytocin signaling pathways

PLIN1 Insulin signaling pathway 613877, 261550

Regulation of lipolysis in adipocytes

PPAR signaling pathway

Metabolism of lipids

AMH TGF-beta signaling pathway 261550, 184700

Signaling pathways regulating pluripotency of stem cells

Transcriptional regulation of testis differentiation

Signaling by BMP

Somatic sex determination

Mammalian disorder of sexual development
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also been reported that the HSD3B1 gene encodes for 
3βHSD1 protein affects DHEA metabolism and androgen 
synthesis, with the HSD3B1(1245C) allele resulting in 
greater androgen production and HSD3B1 (1245A) lim-
iting it, leading to divergent outcomes in androgen-sen-
sitive diseases [44]. It has also been reported that lower 
levels of HSD3B2 in adrenal reticularis facilitate DHEAS 
synthesis, contributing to increased androgen produc-
tion during adrenarche and demonstrated by premature 
adrenarche in subject with a loss in HSD3B2 activity [45].

PPARG (peroxisome proliferator-activated recep-
tor gamma) is a transcription factor that regulates lipid 
and glucose metabolism. Dysregulation of PPARG has 
been associated with severe insulin resistance, a com-
mon metabolic consequence observed in PCOS patients. 
Understanding the role of PPARG in PCOS may pro-
vide insights into the underlying mechanisms of insulin 
resistance and offer potential therapeutic avenues [46]. 
PPP1R3A (protein phosphatase 1 regulatory subunit 3A) 
is involved in glycogen metabolism and glucose homeo-
stasis. Perturbations in PPP1R3A expression have been 
linked to abnormal glycogen storage and impaired glu-
cose metabolism, which are prevalent in PCOS patients 
[47, 48]. Hence, exploring the role of PPP1R3A in PCOS 
could provide valuable insights into the metabolic dys-
regulation observed in affected individuals.

LMNA is a nuclear protein involved in maintaining 
nuclear structure and function, and mutations in the gene 
have been reported to be associated with various car-
diomyopathies, including those seen in PCOS patients; 
hence, investigating the impact of LMNA mutations on 
cardiac function in PCOS may help elucidate the con-
nection between PCOS and cardiovascular abnormalities 
[49, 50]. AMH (anti-Müllerian hormone) is a hormone 
secreted by the ovaries and has a crucial role in folli-
cular development. Elevated AMH levels are frequently 

observed in PCOS, contributing to the characteristic 
follicular abnormalities and impaired ovulation. This 
situation necessitates an understanding of the molecular 
mechanisms underlying AMH dysregulation in PCOS 
and may provide insights into the disrupted ovarian func-
tion observed in affected individuals [51–53]. Therefore, 
by exploring the metabolic consequences associated with 
these genes, including adrenal hyperplasia, severe insulin 
resistance, carotid intimal-medial thickness, cardiomyo-
pathy, and persistent type 1 Müllerian duct syndrome, it 
is possible to gain a comprehensive understanding of the 
molecular pathways implicated in PCOS. Furthermore, 
these findings could lead to identification of potential 
molecular targets for therapeutic development that could 
pave the way for more effective treatments for PCOS 
patients.

The identification of HSD3B2, PPARG, and LMNA as 
key genes associated with PCOS in this research holds 
significant implications for therapeutic intervention and 
the development of effective treatments. Understand-
ing the molecular mechanisms regulated by these genes 
provides valuable insights into the underlying pathogen-
esis of PCOS and offers promising avenues for targeted 
therapeutic approaches. In this study, this exploration 
holds value for therapeutic intervention in dealing with 
genetic findings and their potential implications for 
PCOS management. HSD3B2, a crucial enzyme involved 
in androgen biosynthesis, emerged as a prominent gene 
in PCOS. Dysregulation of HSD3B2 can lead to adrenal 
hyperplasia and excessive androgen production, contrib-
uting to the characteristic symptoms of PCOS. Targeting 
HSD3B2 through pharmacological interventions or gene 
therapy holds promise for modulating androgen levels 
and mitigating PCOS-related symptoms. Inhibitors or 
modulators of HSD3B2 activity could help restore hor-
monal balance and alleviate hyperandrogenism, thereby 

Table 2 (continued)

Genes Description of the pathways OMIM phenotypes ID

AR Endometrial cancer 300068, 312300, 300633, 313200, 176807

Estrogen signaling pathway

Endocrine resistance

Prolactin signaling pathway

Fluid shear stress and atherosclerosis

Breast cancer

Cushing syndrome

Developmental biology

Androgen receptor signaling pathways
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improving reproductive outcomes and ameliorating asso-
ciated metabolic disturbances.

Similarly, PPARG as a therapeutic target has poten-
tial roles because of its involvement in insulin resistance 
which is a hallmark feature of PCOS. Targeting PPARG 
and its downstream pathways may represent a viable 
therapeutic strategy for managing insulin resistance in 
PCOS patients. This could also facilitate identification of 
pharmacological agents which modulate PPARG activity, 
such as selective agonists or antagonists that can help in 
restoring insulin sensitivity, improve glucose metabolism, 
and address the metabolic consequences associated with 
PCOS. Furthermore, lifestyle interventions, including 

exercise and dietary modifications, can influence PPARG 
expression and activity, providing additional non-phar-
macological approaches for therapeutic intervention.

Furthermore, LMNA as a therapeutic target could be 
contributing to treatment of cardiomyopathy, a signifi-
cant metabolic consequence observed in PCOS which 
has been linked to mutations in the LMNA gene. Tar-
geting LMNA and its associated pathways could have 
profound implications for managing cardiac abnor-
malities in PCOS patients. These strategies aimed at 
restoring normal LMNA function or modulating down-
stream signaling cascades could potentially ameliorate 
cardiomyopathy and reduce the risk of cardiovascular 

Fig. 1 Bubble chart depicting the degree of centrality of selected genes associated with PCOS phenotypes. The size of each bubble represents 
the relative count of network interactions for the corresponding gene, while the color indicates the significance level of the gene’s association with 
PCOS. The chart shows that HSD3B2 has the highest degree of centrality, followed by PPARG and LMNA, indicating that these genes have the most 
connections within the PCOS-associated gene network. Other genes, such as AMH, PPP1R3A, and PLIN1, also show significant associations with 
PCOS, albeit with lower degrees of centrality. The bubble chart provides an overview of the relative counts network connections of the selected 
genes in the PCOS-associated gene network, highlighting potential targets for further investigation
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complications. Cardiac-specific interventions, includ-
ing medications targeting specific pathways involved in 
LMNA-related cardiomyopathy, may prove beneficial in 
preserving cardiac function and improving the overall 
cardiovascular health of PCOS patients.

Collectively, targeting these identified genes and their 
specific pathways offers a multifaceted approach to ther-
apeutic intervention in PCOS. This approach can also 
promote personalized medicine approaches, considering 
individual variations in genetic profiles and the specific 
molecular abnormalities present in each patient. Tai-
loring treatments based on the underlying genetic and 
molecular characteristics of PCOS holds promise for 
enhancing treatment efficacy and improving patient out-
comes. However, it is important to note that therapeutic 
interventions based on these genetic findings are still in 
the early stages of development which required further 
research.

Findings in this study is relevant in the context of the 
guidelines of the International Federation of Gynaecol-
ogy and Obstetrics (FIGO) whose focus is promotion 

and facilitation of education, clinical care, design, and 
interpretation of basic, translational, clinical, and epi-
demiological research for improvement of sexual and 
reproductive health of women [54]. The guideline iden-
tified that polycystic ovary syndrome (PCOS) is being 
experienced by up to 20% of reproductive-aged women 
worldwide, and ovulatory disorders are common causes 
of amenorrhea, abnormal uterine bleeding, and infertil-
ity. FIGO classified PCOS based on anatomical model 
focusing on hypothalamus, pituitary, and ovary (HyPO-
P) into types 1, 2, 3, and 4 categories [55]. The classifi-
cations suggested that PCOS is of different cause and 
phenotypes which could include genetic, autoimmune, 
latrogenic, and neoplasm (type 1); functional, infec-
tious, or inflammatory, trauma, and vascular (type 2); 
physiological, idiopathic and endocrine (type 3); and 
anovulation, clinical or biochemical hyperandrogen-
ism, and polycystic ovaries on ultrasound (type 4) [55]. 
The categorization of PCOS into different types by the 
International Federation of Gynaecology and Obstet-
rics (FIGO) provides a comprehensive framework for 

Fig. 2 Bubble chart showing the degree of centrality and relative strength of network interactions for selected genes associated with PCOS 
phenotypes. The chart highlights the top three genes with the strongest connections as HSD3B2, PPARG, and LMNA, in descending order of 
strength. The size of each bubble represents the degree of centrality of the gene network, with larger bubbles indicating higher centrality. The chart 
provides an overview of the most important genes and their relationships in the context of PCOS
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understanding the diverse etiological factors and phe-
notypes associated with the complex syndrome (Fig. 3). 
Meanwhile, findings from this study highlight the sig-
nificance of genes HSD3B2, PPARG, PPP1R3A, and 
AMH in the context of metabolic pathways and the 
identification of HSD3B2, PPARG, and LMNA as key 
genes in PCOS pathogenesis.

The relationship between these findings and FIGO 
classification, focusing on their potential contributions to 
therapy for each PCOS category, is discussed as follows:

• Type 1: This encompasses PCOS cases associated 
with genetic, autoimmune, iatrogenic, or neoplas-
mic causes. The identification of genes such as 
HSD3B2, PPARG, and LMNA is an important player 
in PCOS pathogenesis which aligns with the genetic 
component of type 1 PCOS. These genes have been 
implicated in various molecular pathways related to 
androgen biosynthesis, insulin resistance, and car-
diomyopathy. Therapeutic strategies targeting these 
genes could potentially be beneficial in managing the 
underlying genetic abnormalities and associated clin-
ical manifestations seen in this category of PCOS.

• Type 2: This is characterized by factors such as func-
tional issues, infectious or inflammatory processes, 
trauma, and vascular disturbances. While this pre-
sent study does not specifically investigate the factors 
mentioned in type 2 PCOS, the molecular pathways 
regulated by genes like PPARG and PPP1R3A are 
associated with inflammation, glucose metabolism, 
and vascular health. Modulating the activity of these 
genes and downstream pathways of the genes could 
potentially contribute to addressing the underlying 
mechanisms contributing to functional, infectious/
inflammatory, trauma, or vascular aspects of PCOS 
in type 2 cases.

• Type 3: This encompasses cases where the etiology 
of PCOS is primarily physiological, idiopathic, or 
related to endocrine dysregulation. Although your 
research did not focus on these specific factors, the 
genes identified in your study, such as HSD3B2 and 
PPARG, play crucial roles in endocrine regulation, 
and their dysregulation may contribute to the devel-
opment of PCOS. Therefore, therapeutic interven-
tions targeting these genes and associated pathways 
could potentially address the physiological, idi-

Fig. 3 Graphical depiction of the proposed FIGO Ovulatory Disorders Classification System. The types 1, 2, or 3 disorders according to their primary 
source are hypothalamus, pituitary gland, or ovary, respectively. The PCOS type 4 category is the criteria including clinical, biochemical, hormones, 
and ultrasound findings [56]
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opathic, or endocrine aspects of PCOS observed in 
type 3 cases.

• Type 4: This is the PCOS cases characterized by ano-
vulation, clinical/biochemical hyperandrogenism, 
and the presence of polycystic ovaries on ultrasound. 
The genes, HSD3B2, PPARG, and AMH, identified as 
central to the molecular pathways involved in PCOS 
in this present study are particularly relevant in this 
category. HSD3B2 and AMH have direct implica-
tions for androgen synthesis and follicular devel-
opment, respectively, while PPARG affects insulin 
sensitivity and lipid metabolism. Therapies targeting 
these genes and associated pathways could poten-
tially address the specific features of type 4 PCOS, 
including anovulation, hyperandrogenism, and ovar-
ian morphology.

In summary, findings in this present study with respect 
to importance of genes including HSD3B2, PPARG, 
PPP1R3A, and AMH in PCOS pathogenesis align with 
the FIGO classification’s categorization of PCOS into 
different types. This is because these genes contribute 
to various molecular pathways associated with PCOS 
and could have potential roles in the targeted therapeu-
tic approaches tailored toward addressing the underlying 
genetic and phenotypic characteristics of each PCOS cat-
egory and could also lead to improved management and 
personalized treatment strategies for PCOS patients.

Conclusions
Polycystic ovary syndrome (PCOS) is a complex condi-
tion that affects many women worldwide. Although the 
exact causes of PCOS are not fully understood, research 
has shown that genetic factors play an important role. 
In this study, comprehensive analysis of metabolic path-
ways that are associated with PCOS was carried out to 
identify potential molecular targets for further research 
and therapeutic development. The analysis implemented 
revealed that HSD3B2, PPARG, PPP1R3A, and AMH had 
the highest number of interactions in relation to meta-
bolic pathways reported with PCOS, indicating that these 
genes may be central to the molecular pathways involved 
in the development of PCOS. Furthermore, HSD3B2, 
PPARG, and LMNA emerged as the most important 
genes, suggesting that they could be playing key roles in 
regulating different aspects of PCOS pathogenesis. These 
findings suggest having important implications for future 
research into PCOS. By identifying these key genes and 
their associated pathways, this present study has pro-
vided valuable insights into the molecular mechanisms 
that underlie the complex condition PCOS.

Furthermore, these findings could serve as a basis for 
the development of novel therapeutic approaches that 

target these genes and their associated pathways. For 
example, future research could focus on developing drugs 
that target HSD3B2, PPARG, and LMNA, with the goal 
of regulating the metabolic and hormonal imbalances 
that contribute to PCOS. Alternatively, these genes could 
be targeted using gene therapy or other approaches that 
modify their expression or activity. In overall, this study 
provides important new insights into the genetic factors 
that contribute to PCOS and highlights the potential of 
targeting specific genes and pathways as a promising 
approach to developing effective treatments for this con-
dition. Further research into these targets could lead to 
the development of novel and more effective therapies for 
PCOS, with the potential to improve the health and qual-
ity of life of millions of women around the world.
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