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Toxicological outcome of phthalate exposure 
on male fertility: Ameliorative impacts of the co-
administration of N-acetylcysteine and zinc 
sulfate in rats
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Abstract 

Background:  Reports have shown that humans are consistently exposed to environmental toxicants such as phtha‑
late (PHT) during their daily activities. This results in reproductive dysfunction and infertility-related issues as already 
noted in human and experimental animals. We therefore designed this study to investigate fertility outcome in 
phthalate-exposed male rats treated with N-acetylcysteine (NAC) and zinc sulfate (ZnSO4) with the view of providing 
a therapeutic alternative to reproductive toxicity caused by phthalate. The research was done in two phases. In phase 
1, thirty-five male Wistar rats were randomly assigned to one of five (n = 7) groups given the following treatments for 
21 days: group A was given distilled water as a control, while groups B, C, D, and E were given phthalate (750 mg/kg/
day). Animals in groups C to E were also given ZnSO4 (0.5 mg/kg/day), N-acetylcysteine (100 mg/kg/day), and ZnSO4 
(0.5 mg/kg/day) + N-acetylcysteine (100 mg/kg/day) in addition to phthalate. In phase 2, animals from groups in 
phase 1 were mated with females for fecundity testing.

Results:  The result shows alteration in testicular and epididymis weight and testis/epididymis ratio, semen param‑
eters, sperm capacitation and acrosome reaction, sperm DNA, serum Zn and Mg, testicular mitochondria apoptosis 
mechanisms (TNF-α and BCL-2), and testicular Ca2+-ATPase as well as fecundity outcome in the phthalate-treated 
group. However, ZnSO4 and NAC successfully ameliorated the deleterious effects of phthalate on semen parameters, 
sperm capacitation and acrosome reaction, serum electrolyte and mitochondria apoptosis mechanisms, and testicular 
electrogenic Ca2+-ATPase in phthalate-induced male rats with a better outcome in the combined therapy. Pregnancy 
outcome and litter sizes were also higher in the combined therapy when also compared with the phthalate-treated 
groups.

Conclusion:  According to the result, ZnSO4 and NAC increased fertility outcome in phthalate-treated male rats 
through enhancement of testicular BCL-2, serum electrolyte, testicular Ca2+ATPase pumps, and cytoprotection.

Keywords:  N-acetylcysteine, ZnSO4, Semen parameters, Sperm capacitation and acrosome reaction, Chromatin 
integrity, Ca2+ATPase, BCL-2, TNF-α
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Background
According to reports, humans are routinely exposed to 
environmental toxins and endocrine-disrupting chemi-
cals such as phthalate during normal human activities 
[1–3]. Phthalate is a synthetic substance that is used to 
provide flexibility and solubility in products such as 
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medication coatings, blood and urine bags, infusion fluid 
bag, hand gloves, adults and children toys, cosmetics, and 
many other consumer products [4, 5]. Unfortunately, this 
chemical also acts as an endocrine disruptor and thereby 
causes reproductive dysfunction in human and experi-
mental animals leading to fertility issues [6]. Moreover, 
an experimental evidence suggests that phthalates may 
have developmental and reproductive toxic effects, con-
firming their role in infertility [7].

Infertility is a problem associated with the reproduc-
tive system which prevents a couple from achieving preg-
nancy despite frequent, unprotected sexual intercourse 
for a year or more [8]. The American Pregnancy Asso-
ciation considers the condition to be a disease linked to 
disorder or termination of the functions, processes of 
organs of either the male or female reproductive tract 
that prevents the conception of a child [9]. It is estimated 
that 10–15% of all couples are affected [10–12], resulting 
in approximately 186 million cases of infertility world-
wide, with male factors accounting for more than half 
of these cases [13]. Male infertility is on the rise in Nige-
ria and many other countries around the world [14, 15], 
emphasizing the importance of studying the effects of 
environmental toxins on male infertility.

The mechanism by which phthalate causes assaults on 
the male reproductive system is still being studied [16, 
17], and various treatment approaches are still required 
for the management of phthalate-induced toxicity 
[18–20].

A previous study linked the effects of phthalate to oxi-
dative stress [21], while others postulated that the male 
reproductive tract is highly susceptible to effects of oxi-
dative stress [22, 23]. Consequently, it is believed that 
oxidative stress is likely to play a role in the adverse 
reproductive toxicity caused by phthalate administration 
[22, 24].

N-acetylcysteine (NAC), a widely used antioxidant, 
is a precursor to the amino acid l-cysteine and results 
in the antioxidant glutathione [25], while zinc sulfate, 
another antioxidant agent, has been implicated with 
DNA replication, RNA polymerases, protein synthesis, 
growth processes, and a variety of metabolic processes 
[26]. The present study was therefore conducted on the 
premise that well-established antioxidants such as N-ace-
tylcysteine and zinc sulfate may mitigate changes in tes-
ticular functions caused by chronic phthalate exposure, 
thereby improving fertility outcome.

Methods
Experimental animal model
Sixty-five adult Wistar rats weighing between 150 and 
200g (16–18 weeks old) were used in this experiment, 
thirty-five of which were males and thirty were virgin 

females. The animals were bred in the animal house unit 
of the same institution where the study was done and 
were kept under a standard laboratory condition with a 
12:12-h light and dark cycle at 25°C ± 2°C and allowed 
free access to standard commercial rat pellets with 
standard composition and water ad libitum. The animals 
were acclimatized for 2 weeks prior to the start of drug 
administration.

Experimental design
After acclimation, the research was designed into two 
experimental phases. While phase 1 is an ameliorative 
investigation, phase 2 was designed for fecundity testing.

Phase 1 (ameliorative study)
This phase included thirty-five male Wistar rats ran-
domly assigned to one of five groups (n = 7) and were 
treated for 3 weeks based on the results of previous stud-
ies. Group A which served as the control received dis-
tilled water as placebo for 21 days, group B served as the 
treated control and received phthalate (750 mg/kg/day) 
only for 21 days, group C received phthalate (750 mg/
kg/day) + ZnSO4 (0.5 mg/kg/day) for 21 days, group D 
received phthalate (750 mg/kg/day) + NAC (100 mg/
kg/day) for 21 days, and group E received phthalate (750 
mg/kg/day) + NAC (100 mg/kg/day) + ZnSO4 (0.5 mg/
kg/day) for 21 days. All the drugs were given via the oral 
route of drug administration.

Phase 2 (fecundity testing)
Forty adult Wistar rats which consisted of 10 males 
drawn from groups in phase 1 and 30 virgin females 
were randomized into five groups for the sake of mating. 
The animals were mated in separate cages by pairing 2 
males from each treatment group in phase 2 with 6 virgin 
females as outlined below:

Group F = 6 females mated with 2 males from the 
control
Group G = 6 females mated with 2 males from the 
group treated with phthalate (750 mg/kg/day)
Group H = 6 females mated with 2 males from the 
group treated with phthalate (750 mg/kg/day) + 
ZnSO4 (0.5 mg/kg/day)
Group I = 6 females mated with 2 males from the 
group treated with phthalate (750 mg/kg/day) + 
NAC (100 mg/kg/day)
Group J = 6 females mated with 2 males from the 
group treated with phthalate (750 mg/kg/day) + 
NAC (100 mg/kg/day) + ZnSO4 (0.5 mg/kg/day)
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Collection and administration of drugs
The zinc sulfate used in the study was obtained from 
Uche-care pharmaceutical shop in Ondo, while the 
phthalate and N-acetylcysteine were obtained from 
Sigma Aldrich, USA. The chemicals were given to the 
animals orally using the oro-gastric cannula. The animals 
received phthalate at a dosage of 750 mg/kg/day as modi-
fied from previous studies [6, 27] and N-acetylcysteine 
was given at a dose of 100 mg/kg as recommended in a 
previous study [14], while zinc sulfate was given at a dose 
of 0.5 mg/kg/day also according to a previous study by 
Nawal et al. [28].

Mating and confirmation of pregnancy
The process of mating and confirmation of pregnancy 
were done according to the method of Ochiogu et al. [29] 
also described by Devon [30]. After the female rats were 
distributed, a vaginal smear of each of them was made 
on a clean glass slide by carefully inserting a cotton buds 
swab moistened with normal saline into the rats’ vaginal 
cavity. The swabs were gently rubbed against the vaginal 
wall and carefully rolled around before being removed. 
The moist swab was immediately smeared onto a labeled 
clean glass slide. The smear was examined under a light 
microscope to look for the presence of protein coagulate. 
Each rat was then labeled with an indelible marker of a 
different color. The male rats were then introduced into 
the cages and were allowed to stay with the females for 5 
days during which observation was made every morning.

Sample collection
At the end of the experimental period in phase 1, the ani-
mals were fasted overnight and euthanized by light thi-
opentone sodium. Laparotomy was done and the blood 
sample was collected by cardiac puncture while the testes 
and epididymis were carefully harvested and weighed on 
an electronic weighing balance. The epididymis was used 
for semen analysis and the testes were homogenized for 
biochemical assays while the blood sample was centri-
fuged and serum was collected for electrolyte assay.

Semen analysis
The semen was analyzed by the conventional manual 
microscopic methods as described under the subheadings 
below:

Epididymal sperm motility
Sperm motility was determined by a conventional 
method of Khatun et al. [31]. After the sperm was milked 
on the pre-heated slide, two drops of 2.9% sodium cit-
rate were added. This was then concealed by a cover slip 
and examined under a microscope using a low-light ×40 
objective [31].

Epididymal sperm viability (live/death ratio)
This percentage of spermatozoa in a unidirectional pro-
gressive movement across a field on a slide was observed 
with a light microscope fitted with a camera using the 
eosin/nigrosin stain; the specimen used for epididy-
mal sperm motility was retrieved and the cover slip 
was quickly removed and two drops of eosin/nigrosin 
stain were added and a smear was made, air-dried, and 
viewed under the light microscope [32]. Because of their 
intact cell membranes, living sperm cells were unstained, 
whereas dead sperm cells took up the stain (because of 
their damaged cell membrane). The percentage of live/
dead was calculated by counting 100 cells as described in 
previous studies [31, 33].

Sperm morphology
On a clean slide, a thin coating of the sperm sample was 
applied, which was then fixed with 95% ethanol and air-
dried. The slide was then sequentially immersed in differ-
ent concentrations of ethanol followed by staining with 
Harris hematoxylin, G-6 orange stain, and EA-50 green 
stain for 1 min each. The slide was then microscopically 
examined at ×1000 magnification and 200 sperm were 
analyzed and sperm anomalies were expressed in per-
centages [32, 33].

Epididymal sperm count
This was done as described by Omirinde et al. [32]. The 
caudal portion of the epididymis was homogenized in 
formal saline, and sperm counting was performed using 
the enhanced Neubauer Chamber (LABART, Germany) 
under the light microscope at a magnification of ×40.

Sperm capacitation and acrosome reaction
Sperm samples were obtained by milking the cau-
dal epididymis of rats into a pre-warm modified sperm 
capacitation medium (SCM) as described by Bailey [34]. 
To an Eppendorf tube containing 1ml of SCM, 100 μl of 
sperm sample was transferred and incubated in a damp 
atmosphere of 5% CO2 for 3 h at 37°C. An aliquot of the 
sperm was removed from each group and sperm acro-
some status was then estimated using the Coomassie 
brilliant blue staining technique [35]. On glass slides, 
sperm samples were air-dried and fixed with ethanol. 
After drying, the slides were submerged in a 5% solution 
of paraformaldehyde in PBS for 15 min and then washed 
once with PBS. The slides were stained with aqueous 
0.25% CBB R-250 in 10% glacial acetic acid and 25 per-
centage methanol, rinsed with water, cleaned, air washed, 
and sealed with cover lips under mounting media (Olym-
pus, Japan). The acrosome region was stained blue in 
the acrosome-intact sperm while the acrosome-reacted 
sperm were unstained [35]. Then, for capacitated sperm 
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cells, the head was stained. Each acrosome assessment 
represents 5 to 6 microscopic fields with 80 to 100 sperm 
in each field.

Assessment of sperm DNA damage using the toluidine 
blue staining technique
This was done as described by Selvam and Agarwal [36] 
in which a thin smear was prepared with the semen sam-
ple, air-dried, and fixed in 96% ethanol and acetic acid 
solution of equal ratio (1:1) for about 30 min at 4°C. The 
slides were treated with 0.1M HCl for 5 min at 4°C after 
which distilled water was used to wash them 3 times for 2 
min and then stained with 0.05% toluidine blue stain for 
10 min. The slides were then examined under the light 
microscope at a magnification of ×4 to observe the heads 
of the spermatozoa as established by [37].

Electrolyte (Zn and Mg) level determination
Electrolytes (Zn and Mg) were determined by the 
enzyme-based immunoassay (EIA) system by the help 
of the automated electrolyte analyzer described by 
Karen [38].

Testicular TNF‑α and BCL‑2 analysis
These parameters were measured using ELISA [39] after 
reagents, tests, and standards were prepared in accord-
ance with the manufacturer’s instructions.

Testicular tumor necrotic factor-alpha (TNF-α) analy-
sis was done by using the tumor necrosis factor-alpha 
(TNF-α) kit for rat testicular homogenates according 
to the method described by Karna et al. 2019 [40]. Both 
reagents, tests, and standards were prepared in accord-
ance with the manufacturer’s instructions. One hundred 
microliters of standard or sample was added to each well 
and incubated for1 h at 37°C after which it was aspirated. 
One hundred microliters of prepared detection reagent 
A was added and incubated again for 1 h at 37°C, aspi-
rated, and washed 3 times. One hundred microliters of 
prepared detection reagent B was applied, and it was 
incubated for 30 min at 37°C before being aspirated and 
washed 5 times. The 90-μl substrate solution was then 
applied, and the incubation time was increased to 10–20 
min at 37°C. Finally, 50 μl of stop solution was applied, 
and the reading at 450nm was taken right away.

Testicular B-cell lymphoma-2 (BCL-2) analysis was 
also measured using the ELISA method, using the 
B-cell lymphoma-2 (BCL-2) kit designed for rat tes-
ticular homogenates according to the method of Adams 
et  al. 2019 [39]. Accordingly, 100-mg testicular tissue 
was rinsed with 1X PBS, homogenized in 1 ml of 1X 
PBS, and stored overnight at −20°C. The sample was 
centrifuged again after thawing before the assay. All 
reagents and standards were prepared as described in 

the kit user’s guide. One hundred microliters of stand-
ard and sample per well was added to the prepared 
reagent, covered with an adhesive strip provided, and 
incubated for 2 h at 37°C. The liquid of each well was 
then removed. One hundred microliters of Biotin-
antibody (1x) was added to each well, covered with a 
new adhesive strip, and incubated for 1 h at 37°C. After 
incubation, each well was aspirated and washed and the 
process was repeated two times. The wells were then 
washed by filling each well with wash buffer (200μl) 
using a squirt bottle, multi-channel pipette, manifold 
dispenser, and let it stand for 2 min. After the last wash, 
any remaining wash buffer was decanting after which 
the plate was inverted and blotted against clean paper 
towels. One hundred microliters of HRP-avidin (1x) 
was added to each well and the micro-titer plate was 
covered with a new adhesive strip and incubated for 1 
h at 37°C. The aspiration/wash process was repeated 
for five times. Ninety microliters of TMB substrate 
was added to each well and incubated for 15–30 min at 
37°C. Fifty microliters of stop solution was then added 
to each well and mixed thoroughly. The optical den-
sity of each well was determined within 5 min, using a 
microplate reader set to 450 nm.

Determination of Ca2+ ATPase activity in testicular 
homogenate
This was done based on a modification of the method 
described by Olaniyan et al. [41] in which 0.5 ml of each 
of 21.0 mM magnesium chloride, 17.5 mM calcium 
chloride, 10 mM of Tris HCl at PH 7.4, and 8.0 mM 
disodium ATP was mixed together in a test tube. 0.2 ml 
of tissue homogenate was added to it and incubated at 
37 °C for 60 min. The reaction was brought to an end by 
adding 0.8 ml of ice-cold 10% (w/v) trichloroacetic acid 
(TCA). It was then allowed to stand at 4°C for 20 min 
and centrifuge at 4000 rpm for 5 min. To 1 ml of the 
supernatant was then added 1 ml of 1.25% ammonium 
molybdate and wait for 10 min. Then, 1 ml of 9% ascor-
bic acid was added and kept at room temperature for 20 
min and the absorbance was measured at 725 nm using 
a spectrophotometer.

Statistical analysis
Data were analyzed using biostatistics software, Graph 
pad prism version 8.0 (Graph pad Software, Inc., Lajolla, 
USA). All data were presented as mean ± SEM (standard 
error of mean). Thereafter, analysis was carried out by 
one-way analysis of variance (ANOVA) followed by post 
hoc test (Tukey’s) for multiple comparisons. For all tests, 
the level of significance was set at p < 0.05.
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Results
Effects of treatment with zinc sulfate and N‑acetylcysteine 
on organ weight in phthalate‑treated male Wistar rats
Figure 1a shows a statistically significant decrease in tes-
ticular weight [F (4, 20) = 12.41, p < 0.0001] in the group 
exposed to the PHT (750 mg/kg)-treated group when 
compared with the control (p < 0.05). However, there 
was a statistically significant increase in testicular weight 
in PHT+ZnSO4, PHT+NAC, and PHT+ZnSO4+NAC 
groups when compared with the PHT (750 mg/kg) group. 
Figure  1b shows a similar statistically significant reduc-
tion in weight of the epididymis [F (4, 20) = 6.841, p = 
0.0012] in PHT-treated rats when compared with control 
(p < 0.05). The result also shows an increase in weight 
of the epididymis in phthalate groups co-treated with 
PHT+ZnSO4, PHT+NAC, and PHT+ZnSO4+NAC 
when compared with the group treated with only PHT 
(750 mg/kg). Furthermore, Fig.  1c shows a statistically 
decrease in epididymis/testis ratio [F (4, 20) = 3.716, p = 
0.0203] in the PHT-treated group when compared with 
the control (p < 0.05). It also shows a significant decrease 
in epididymis/testis ratio [F (4, 20) = 6.008, p = 0.0024] 

in PHT groups co-treated with ZnSO4 (0.5 mg/kg) and 
ZnSO4+NAC when compared with the group treated 
with only PHT (750 mg/kg), although there was a con-
current decrease in epididymis/testis ratio in the NAC 
(100 mg/kg) co-treated group but this change was not 
statistically significant when compared with the PHT-
treated group.

Effects of treatment with zinc sulfate and N‑acetylcysteine 
on semen parameters of phthalate‑treated male Wistar rats
Figure  2A shows the effects of treatment with ZnSO4 
and N-acetylcysteine on sperm count in phthalate-
treated male Wistar rats. Sperm count [F (4, 20) = 14.57, 
p < 0.0001] was significantly reduced in the PHT-treated 
group when compared to the control group. However, 
Fig. 2A also shows a significantly higher sperm count in 
the PHT+ZnSO4+NAC-treated group when compared 
with the PHT-treated group as well as the PHT+ZnSO4- 
and PHT+NAC-treated groups respectively. Figure  2B 
shows the effects of treatment with ZnSO4 and NAC 
on sperm motility [F (4, 20) = 24.21, p < 0.0001] in 
phthalate-treated male Wistar rats. Accordingly, sperm 

Fig. 1  Effects of treatment with zinc sulfate and N-acetylcysteine on organ weight in phthalate-treated male Wistar rats. Values are expressed as 
mean ± SEM (n = 5) (one-way ANOVA followed by Tukey’s post hoc test). PHT phthalate, ZnSO4 zinc sulfate, NAC N-acetylcysteine. * and a p < 0.05 
were considered statistically significant when compared with the control and PHT-treated groups respectively
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motility was significantly reduced in the PHT-treated 
group when compared to the control group while it was 
concurrently higher in the PHT+ZnSO4-, PHT+NAC-, 
and PHT+ZnSO4+NAC-treated groups when compared 
with the PHT-treated group respectively. The higher 
sperm motility in PHT+ZnSO4+NAC-treated is signifi-
cant when compared to the PHT+NAC-treated group. 
Figure 2C shows the effects of treatment with ZnSO4 and 
NAC on sperm viability [F (4, 20) = 17.26, p < 0.0001] 
in phthalate-treated male Wistar rats. Accordingly, 
sperm viability significantly reduced in the PHT-treated 
group when compared to the control group (p < 0.05). 
However, there was also increased sperm viability in 
PHT+ZnSO4-, PHT+NAC-, and PHT+ZnSO4+NAC-
treated groups when compared with the PHT-only-
treated group respectively with a better outcome in 
the PHT+ZnSO4+NAC-treated group. The result in 
Fig. 2D shows the effects of treatment with ZnSO4 and 

NAC on sperm morphology in phthalate-treated male 
Wistar rats. Percentage of spermatozoa with abnormal 
morphology significantly increased [F (4, 20) = 23.34, 
p < 0.0001] in the PHT-treated group when compared 
with the control while treatment with PHT+ZnSO4, 
PHT+NAC, and PHT+ZnSO4+NAC showed reduced 
numbers of spermatozoa with abnormal morphol-
ogy with a better outcome in the PHT+ZnSO4+NAC-
treated group (Fig. 2D).

Effects of treatment with zinc sulfate and N‑acetylcysteine 
on sperm capacitation and acrosome reaction 
in phthalate‑treated male Wistar rats
Figure  3A shows the effects of treatment with zinc 
sulfate and N-acetylcysteine on sperm capacitation 
in phthalate-treated male Wistar rats. A significant 
reduction in sperm capacitation was seen in the PHT-
treated group when compared to the control (p < 0.05). 

Fig. 2  Effects of treatment with zinc sulfate and N-acetylcysteine on semen parameters of phthalate-treated male Wistar rats. Values are expressed 
as mean ± SEM (n = 5) (one-way ANOVA followed by Tukey’s post hoc test). PHT phthalate, ZnSO4 zinc sulfate, NAC N-acetylcysteine. *, ***p < 0.05 
and p < 0.001 were considered statistically significant when compared with the control, while a, b, and c p < 0.05 were statistically significant when 
compared with PHT-, PHT+ZnSO4-, and PHT+NAC-treated groups respectively
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There was a significant increase in sperm capacita-
tion [F (4, 20) = 6.070, p = 0.0023] in PHT+NAC- and 
PHT+ZnSO4+NAC-treated groups when compared 
with the PHT group respectively (p < 0.05). Similarly, 
Fig.  3B shows the effects of treatment with zinc sulfate 
and N-acetylcysteine on sperm acrosome reaction in 
phthalate-treated male Wistar rats. As shown in the fig-
ure, there was a significant decrease in the percentage 
of acrosome-intact reacted sperm [F (4, 20) = 8.228, p 
= 0.0004] in the PHT-treated group after incubation in 
sperm capacitation medium when compared to control 
groups (p < 0.05). On the other hand, there was also a 
significantly (p < 0.05) higher percentage of acrosome-
intact reacted sperm in the groups co-treated with 

PHT+ZnSO4, PHT+NAC, and PHT+ZnSO4+NAC 
when compared with the PHT-treated group respectively.

Effect of treatment with zinc sulfate and N‑acetylcysteine 
on abnormal sperm chromatin integrity 
in phthalate‑treated male Wistar rats
Figure  4 shows the effects of treatment with ZnSO4 and 
N-acetylcysteine on sperm chromatin integrity after using 
toluidine blue stain in phthalate-induced reproductive tox-
icity in male Wistar rats. Accordingly, treatment with PHT 
expresses a significant (p < 0.05) increase percentage in 
sperm with abnormal chromatin when compared to control 
groups. There was also a significant (p < 0.05) decrease in 
the percentage of sperm cells with abnormal chromatin [F 

Fig. 3  Effect of treatment with zinc sulfate and N-acetylcysteine on sperm capacitation and acrosome reaction in phthalate-treated male Wistar 
rats. Values are expressed as mean ± SEM (n = 5) (one-way ANOVA followed by Tukey’s post hoc test). PHT phthalate, ZnSO4 zinc sulfate, NAC 
N-acetylcysteine. ⁕ and a were considered statistically significant (p < 0.05) when compared with the control and PHT-treated groups respectively

Fig. 4  Effect of treatment with zinc sulfate and N-acetylcysteine on abnormal sperm chromatin condensation in phthalate-treated male Wistar 
rats. Values are expressed as mean ± SEM (n = 5) (p < 0.05) (one-way ANOVA followed by Tukey’s post hoc test). n = 5, PHT phthalate, ZnSO4 zinc 
sulfate, NAC N-acetylcysteine. *, a, b, and c were considered statistically significant when compared with the control, PHT-, PHT+ZnSO4-, and 
PHT+NAC-treated groups respectively
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(4, 20) = 7.873, p = 0.0006] in PHT+ZnSO4+NAC-treated 
groups when compared with the PHT-, PHT+ZnSO4- and 
PHT+NAC-treated groups respectively.

Effect of zinc sulfate and N‑acetylcysteine on serum 
electrolyte (Zn and Mg) in phthalate‑treated male Wistar 
rats
The effect of treatment with zinc sulfate and N-acetyl-
cysteine on serum electrolyte (Zn and Mg) in phthalate 
in phthalate-treated male Wistar rats is shown in Fig. 5. 
The chronic treatment with phthalate (750 mg/kg) pro-
duced a significant (p<0.05) decrease in the serum level 
of Zn (Fig.  5A) and Mg (Fig.  5B) in the groups treated 
with only PHT when compared with their respective 
control (p < 0.05). However, Fig.  5A also shows a sig-
nificant (p<0.05) increase in the serum level of zinc in 
the PHT+ZnSO4 and PHT+ZnSO4+NAC when com-
pared with the group treated with only PHT, and Fig. 5B 
shows a significantly (p<0.05) high serum Mg level in 
the PHT+ZnSO4+NAC-treated group when com-
pared to the PHT treatment group. There was no inter-
group difference in the level of Zn and Mg between 
PHT+ZnSO4+NAC-, PHT+ZnSO4-, and PHT+NAC-
treated groups respectively.

Effect of treatment with zinc sulfate and N‑acetylcysteine 
on testicular inflammatory biomarker (TNF‑α) 
and anti‑apoptotic factor (BCL‑2) in phthalate‑treated male 
Wistar rats
The effect of zinc sulfate and N-acetylcysteine on testicu-
lar tissue necrotic factor-alpha (TNF-α) and beta cell lym-
phoma-2 (BCL-2) in phthalate-treated male Wistar rats 

is shown in Fig. 6a and b respectively. As demonstrated 
in Fig.  6a and b, chronic treatment with phthalate (750 
mg/kg) produces a significant (p<0.05) increase in TNF-α 
(Fig. 6a) and a significant decrease in BCL-2 (Fig. 6b) in 
the group treated with only PHT as compared with their 
corresponding control groups respectively. However, the 
result also shows a significant (p<0.05) lower levels of tes-
ticular TNF-α (Fig. 6a) in the PHT+ZnSO4, PHT+NAC, 
and PHT+ZnSO4+NAC when compared with the 
group treated with only PHT, with a better outcome in 
the PHT+ZnSO4+NAC-treated group. In Fig. 6b, there 
was also a corresponding increase seen in BCL-2 levels in 
the PHT+ZnSO4+NAC-treated group when compared 
with the PHT-, PHT+ZnSO4-, and PHT+NAC-treated 
groups respectively.

Effect of treatment with zinc sulfate and N‑acetylcysteine 
on testicular Ca2+ ATPase level in phthalate‑treated male 
Wistar rats
Figure 7 shows the effect of treatment with zinc sulfate 
and N-acetylcysteine on testicular Ca2+-ATPaese level 
in phthalate-treated male Wistar rats. Accordingly, tes-
ticular Ca2+ATPase [F (4, 20) = 15.58, p < 0.0001] was 
significantly reduced in the group treated with only 
PHT when compared with the control (p < 0.05). Tes-
ticular Ca2+-ATPaese was also significantly increased 
in PHT+ZnSO4, PHT+NAC, and PHT+ZnSO4+NAC 
when compared with the PHT-only-treated group 
respectively. The result also showed that testicular 
Ca2+-ATPaese activities were significantly (p < 0.05) 
higher in the PHT+ZnSO4+NAC group when com-
pared with the other treatment groups respectively.

Fig. 5  Effect of co-administration of zinc sulfate and N-acetylcysteine on serum zinc (A) and Mg (B) levels in phthalate-treated male Wistar 
rats. Values are expressed as mean ± SEM (n = 5) (one-way ANOVA followed by Tukey’s post hoc test). PHT phthalate, ZnSO4 zinc sulfate, NAC 
N-acetylcysteine. ⁕ and a p < 0.05 considered statistically significant when compared with the control and PHT-treated groups respectively
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Effect of treatment with zinc sulfate and N‑acetylcysteine 
on histology of the testis in phthalate‑treated male Wistar 
rats
Plate 1 A shows a testicular tissue from the control 
group showing the normal testicular architecture. 
Plate 1B shows a photomicrograph of a testicular sec-
tion from the PHT-treated group showing a very poor 
testicular architecture with several severely fibrotic, 

atrophic seminiferous tubules which exhibit thickened 
propria enveloping the tubules and some vacuolations. 
There are also degenerated epithelial germ cells and 
some seminiferous tubules seen with degeneration 
and maturation arrest. The interstitial spaces appear 
normal but also seen as moderately congested tunica 
albugenia (Plate 1B). A photomicrograph of a testicu-
lar section from the group treated with PHT+ZnSO4 

Fig. 6  Effect of zinc sulfate and N-acetylcysteine on testicular inflammatory biomarker (TNF-α) and anti-apoptotic factor (BCL-2) in 
phthalate-induced reproductive toxicity in male Wistar rats. Values are expressed as mean ± SEM (n = 5) (one-way ANOVA followed by Tukey’s post 
hoc test). PHT phthalate, ZnSO4 zinc sulfate, NAC N-acetylcysteine. ⁕, a, b, and c p < 0.05 statistically significant when compared with the control, 
PHT-, PHT+ZnSO4-, and PHT+NAC-treated groups respectively

Fig. 7  Effect of treatment with zinc sulfate and N-acetylcysteine on testicular Ca2+ATPase level in phthalate-treated male Wistar rats. Values 
are expressed as mean ± SEM (n = 5) (p < 0.05) (one-way ANOVA followed by Tukey’s post hoc test). PHT phthalate, ZnSO4 zinc sulfate, NAC 
N-acetylcysteine. *, a, b, and c were considered statistically significant (p < 0.05) when compared with the control, PHT-, PHT+ZnSO4-, and 
PHT+NAC-treated groups respectively
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(Plate 1C) shows several normal seminiferous tubules 
with normal germ cell layer with maturation stages, 
the lumen appears normal with the presence of sper-
matozoa but few seminiferous tubules still show mat-
uration arrest while the interstitial spaces and Leydig 
cells now appear normal. Plate 1D is the photomicro-
graph of a testicular section from the group co-treated 
with PHT+NAC showing several normal seminifer-
ous tubules with normal germ cell layer with normal 
maturation stages, the lumen appears normal with the 

presence of spermatozoa but there are still few semi-
niferous tubules with maturation arrest. The intersti-
tial spaces appear normal but still with areas appearing 
congested. Photomicrograph of a testicular section 
from the group treated with PHT+ZnSO4+NAC is 
shown in Plate 1E: the histology shows a normal tes-
ticular architecture with normal seminiferous tubules 
and normal maturation stages with the presence of 
spermatozoa within their lumen. The interstitial spaces 
also show normal Leydig cells

Plate 1  A Effect of treatment with zinc sulfate and N-acetylcysteine on histology of the testis in phthalate-treated male Wistar rats. A 
Photomicrograph of testicular sections from the control group: seminiferous tubules with the presence of spermatozoa (white arrow). The interstitial 
spaces and Leydig cells (slender arrow). B Photomicrograph of a testicular section from the PHT group; very poor testicular architecture (spaned 
black), fibrotic and atrophic seminiferous tubules with and vacuolation (white arrow), seminiferous tubules with degeneration and maturation arrest 
(black arrow), interstitial spaces (slender arrow), moderately congested tunica albugenia (red cells). C Photomicrograph of a testicular section from 
the PHT+ZnSO4-treated group; seminiferous tubules with the presence of spermatozoa (white arrow). Seminiferous tubules show maturation arrest 
(black arrow), interstitial spaces with Leydig cells (slender arrow). D Photomicrograph of a testicular tissue treated with PHT+NAC; seminiferous 
tubules with the presence of spermatozoa (white arrow). Seminiferous tubules with maturation arrest (black arrow). Interstitial spaces (slender 
arrow), congestion (green arrow). E Photomicrograph of a testicular section from the group treated with a combination of PHT+ZnSO4+NAC; 
seminiferous tubules with the presence of spermatozoa (white arrow). Interstitial spaces with normal Leydig cells (slender arrow)
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Fecundity (%pregnancy, litter size, average pub weight, 
gestation length) outcome in phthalate‑exposed male 
Wistar rats treated with zinc sulfate and N‑acetylcysteine 
and percentage survival of the offspring 
of phthalate‑treated male Wistar rats after 1 month
Table  1 shows the effects of treatment with zinc sulfate 
and N-acetylcysteine on fecundity in phthalate-induced 
reproductive toxicity in male Wistar rats. Table 1 shows 
a lower percentage (33.3%) of pregnancy outcome in 
female Wistar rats mated with male Wistar rats treated 
with phthalate (PHT) only. There was no difference in the 
pregnancy outcome between female mated with male in 
the control group (100%) and the PHT+NAC (100)- and 
PHT+ZnSO4+NAC (100)-treated groups but these val-
ues were significant when compared with the PHT group 
respectively. The result also shows a reduction in lit-
ter size in groups mated with male Wistar rats from the 
PHT group as compared to the control group. However, 
the litter size in females mated with males treated with 
PHT+ZnSO4+NAC seems to be higher than that with 
PHT-, PHT+ZnSO4- and PHT+NAC-treated groups.

Discussion
For toxicological studies, organ weight is the most impor-
tant criterion [42]. An earlier study of consequences of 
toxic substances on organs weight has demonstrated that 
the testis is more sensitive to endocrine disruptors than 
other important organs in the body [43]. The reduction 
in weight observed in this study following administration 
of phthalate is due to degeneration of some vital struc-
tures of the epididymis and testis (seminiferous tubules 
and Leydig cells) as shown in Plate 1. The degeneration of 
the seminiferous tubule implies a decrease in numbers of 
germ cells, Sertoli cells, and consequence low semen out-
put that is discussed later in this section. This finding is in 
line with a similar reduction in organ weight observed in 
pubertal rats in a previous [44, 45]. However, co-admin-
istration of phthalate with either of ZnSO4, NAC, and 
ZnSO4+NAC was able to ameliorate the effect of phtha-
late on testicular and epididymis weights. The treatment 

also ameliorated phthalate-induced epididymis/testicular 
ratio derangement following its co-administration with 
ZnSO4 and ZnSO4+NAC. This shows the attenuating 
potentials of the combination of ZnSO4 and NAC on 
the testicular and epididymal weight loss possibly due to 
their cytoprotective potentials.

The quality and fertility potentials of sperm have 
declined dramatically over the last decade [46–48]. The 
current study found that phthalate (750 mg/kg) admin-
istered alone for 3 weeks reduced sperm count, viability, 
motility, and increased cells with abnormal morphology. 
However, when zinc sulfate and N-acetylcysteine or a 
combination of both was co-administered with phthalate 
for 21 days, the negative effects of phthalate on sperm 
quantity and quality were ameliorated. Although this 
study did not examine ROS, several studies have linked 
the effects of phthalate on sperm parameters to the gen-
eration of reactive oxygen species (ROS) at the cellular 
level [49–55]. The pathway for causing the damaging 
effects on spermatogenesis could also be by reducing 
levels of testosterone due to degeneration of Leydig cells 
observed in the present study, or early detachment of the 
germ cells from the Sertoli cells as presented in the his-
tology (Plate 1). Consequently, spermatogenesis (Mur-
phy and Richburg, 2015) was hampered [56]. Although 
this finding is consistent with our earlier report [6], it is 
contrary to the report of Tian et al. [57], who noticed a 
positive association between low-level environmental 
phthalate exposure and sperm motility. The differences 
observed here might be due to the adopted doses and 
duration of exposure. Co-administration of phthalate 
with ZnSO4, NAC, and ZnSO4+NAC also ameliorated 
the effects of phthalate on sperm quality and quantity in 
this study. Although there is no existing evidence on the 
combined effects of ZnSO4 and NAC on semen param-
eters, this finding correlates with the report of [58] who 
reported improvement from different treatments with 
ZnSO4, NAC, and other antioxidants on sperm indi-
ces. Da-Silva et al. [50] earlier reported that the effect of 
arsenic trioxide on the male mouse genital system was 

Table 1  Effects of treatment with zinc sulfate and N-acetylcysteine on fecundity in phthalate-treated male Wistar rats

PHT phthalate, ZnSO4 zinc sulfate, NAC N-acetylcysteine

*,ap < 0.05 was considered statistically significant when compared with the control and PHT-treated groups respectively

Group (n = 6) %Pregnancy Gestation length 
(days)

Average litter size Average pup 
weight (g)

Pop survival rate 
after 1 month (%)

Control 100 22±0.58 7.0±0.58 10.2±0.35 79

PHT 33.3* 20±0.00 4.0±0.00* 9.9±0.00 100

PHT+ ZnSO4 66.7 24±1.00 6.5±0.50 10.1±0.30 77

PHT+NAC 100a 23±1.53 6.0±0.33 9.87±0.17 79

PHT+ ZnSO4+NAC 100a 24.5±1.00 8.0±0.58a 9.63±0.09 77
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improved by the co-administration of N-acetylcysteine. 
Similarly, [59] also reported similar ameliorative activi-
ties on co-administration of zinc sulfate and vitamin E on 
reproductive toxicity caused by aluminum sulfate in male 
albino rats. We therefore believe that ZnSO4 and NAC 
could have done these through their anti-oxidative and 
cytoprotective potentials.

To achieve effective fertilization under normal situ-
ations in the oviduct, the mammalian sperm cells must 
first undergo capacitation [60, 61] followed by acro-
some reaction [61, 62]. Therefore, the extent of severity 
of male infertility depends on the degree of inhibition of 
acrosomal reaction and sperm capacitation [63]. Using 
the Coomassie brilliant blue staining technique, phtha-
late was found to significantly reduce sperm capacitation 
and acrosome reaction, an effect that was ameliorated 
by co-administration of ZnSO4 and NAC in the present 
study. This suggests an ability of the therapy to improve 
egg binding and fertilization which can be attributed to 
the cytoprotective effects of this combination and its 
possible effect on the electrogenic pump as implicated 
by the higher Ca2+ATPase activities also shown in the 
PHT+ZnSO4+NAC group in this study. These find-
ings support the existing hypothesis that some forms of 
phthalate may affect sperm motility, penetration ability, 
and capacitation [64], and contrary to the report of Sun 
et al., [65] who observed that neither DEHP nor MEHP 
alone or in combination had any effect on capacitation 
following incubation of the sperm sample in a small con-
centration of phthalates. The difference observed here is 
attributed to the difference in methods of evaluation and 
duration of exposure adopted in the studies.

Sperm DNA fragmentation index is an important 
marker of male infertility while an excessive sperm DNA 
fragmentation has been linked to poor sperm qual-
ity, fertilization process, embryo quality, and pregnancy 
outcome in previous studies [66, 67]. Consequently, the 
result of the present study showed an increase in abnor-
mal sperm chromatin in the group treated with only 
phthalate for 21 days. This is an indication that phthalate 
may directly attack sperm DNA by altering chromatin 
level, thereby leading to a high level of abnormal sper-
matozoa also noticed in this study. The use of antioxi-
dants has been linked with the amelioration of negative 
impacts of chemo toxicants on sperm DNA [68, 69]. Sim-
ilarly, NAC and ZnSO4 co-administered with phthalate 
ameliorated the negative impact of phthalate in the pre-
sent study. This is due to the antioxidant ability of NAC 
and ZnSO4 and their abilities to maintain cellular levels 
of Zn and Mg, which are important regulators of DNA 
replication, transcription, and protein synthesis, influ-
encing cell division and differentiation as earlier stated 
in previous studies [70, 71]. The outcome of this study 

is similar to that of Sooklert et  al. [72] in which NAC 
reversed the decrease of DNA methylation status caused 
by engineered gold, silicon, and chitosan nanoparticles 
and that of Düzenli et al. [73] in which acetyl-l-carnitine 
(ALC) and NAC combination treatment inhibits DNA 
damage and induces DNA repair. Again Baetas et al. [74] 
who worked on the protective role of N-acetylcysteine on 
human sperm exposed to etoposide also observed that 
NAC counteracted the cytotoxic effects of etoposide on 
sperm DNA, while Jannatifar et al. [75] and Yildiz et al. 
[76] in their separate studies observed that DNA frag-
mentation significantly decreases in spermatozoa after 
NAC treatment. In the same way, an earlier study on zinc 
showed that a moderate increase in dietary zinc reduces 
DNA strand breaks in leukocytes [77].

Zinc has been noted to be the second most abundant 
trace element in humans with many unique properties in 
the male reproductive system. It is an anti-inflammatory 
factor and involved in the sperm’s oxidative metabolism, 
a hormone balancer which helps to regulate hormones 
such as testosterone; it is essential for maintaining the 
lining of the reproductive organs and also has a regulative 
role in the progress of capacitation, acrosome reaction, 
and sperm DNA integrity [78, 79]. Its deficiency prevents 
spermatogenesis which is a source of sperm defects and 
has a detrimental effect on the concentration of serum 
testosterone [70]. Therefore, the fall in serum level of Zn 
observed in this study after treatment with phthalate is 
a confirmation that electrolyte imbalance is one of the 
mechanisms by which phthalate reduced motility and 
sperm count and increased TNF-α and DNA damage 
seen in this study. Phthalate used in this study also caused 
low serum magnesium levels in consistence with the find-
ings of Deger and Akkus [80] who reported lower semi-
nal fluid magnesium levels in different forms of infertile 
subjects. The effect of phthalate on zinc and magnesium 
was ameliorated by ZnSO4, NAC, and a combination of 
ZnSO4+NAC when co-administered with phthalate. The 
mechanism of action of these substances is through their 
abilities to improve proton-pump activities.

One mechanism of action of phthalates also observed 
in this study is inflammation and apoptosis through the 
mitochondrial apoptotic activities. Two signaling path-
ways (extrinsic and intrinsic) have been identified to insti-
gate cellular apoptosis. The extrinsic pathway is believed to 
occur through the action of inflammatory markers such as 
tumor necrosis factor (TNF) superfamily of ligands binding 
to their associated receptors while the intrinsic signaling 
is through events that result in the release of cytochrome 
C from the mitochondria normally indicated by the low 
level of BCL-2 [81–85]. The present study showed that 
exposure to phthalate leads to an increase in the produc-
tion of testicular inflammatory biomarker-tumor necrotic 
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factor-alpha (TNF-α) and a fall in testicular level BCL-2. 
This is an indication that phthalate also exerted its repro-
toxic effects via the extrinsic and intrinsic signaling mito-
chondria pathway normally mediated by oxidative stress. 
When either of these happens, the Leydig cells, Sertolic 
cells, and germ cells undergo apoptosis [86–88] which 
in turn lead to degeneration and sloughing of the cell and 
thereby leading to poor testicular functions also noted fol-
lowing treatment with phthalate in this study.

However, co-treatment with ZnSO4, NAC, and 
ZnSO4+NAC was able to ameliorate these effects of 
phthalate on testicular mitochondria activities by acting 
as anti-apoptotic agents [78, 88–92].

The result from this study also implicated phthalate 
in reducing litter size and percentage pregnancy. The 
effects on litter size and pregnancy outcome are associ-
ated with testicular atrophy, reduced epididymal sperm 
density and motility, and increased numbers of abnor-
mal sperm in male rats as earlier reported in the study 
of Rowdhwal and Chen [93] and David [94]. Concern-
ing the potential role of co-administration of ZnSO4 and 
NAC on fertility outcome in phthalate-exposed animals, 
the fecundity test performed in this study revealed that 
both zinc sulfate and N-acetylcysteine, administered 
separately or together, were able to reduce the effects of 
phthalate on percentage pregnancy and litter size, with a 
better outcome observed when they were administered 
together.

Conclusions
Conclusively, the study provides an insight into the 
mode of action of phthalate on testicular damage and 
the beneficial role provided by the combined treat-
ment of NAC and ZnSO4. Cumulatively, zinc sulfate and 
N-acetylcysteine ameliorated the effects of phthalate on 
testicular functions and increased fertility outcome in 
male Wistar rats via a mechanism related to the enhance-
ment of testicular BCL-2, inhibition of upregulation of 
TNF-α, electrolyte balance, stabilization of testicular 
Ca2+ATPase pumps, cytoprotection, and restoration of 
spermatogenesis.
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