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Abstract 

Background:  Affordable conventional semen analysis remains a fundamental procedure to be performed routinely 
during the diagnosis of male infertility. Advanced semen analyses provide valuable clinical insights in treatment-
related decision-making, but these are highly expensive and lack universal standardization. This study aimed at 
determining the relationship between conventional semen parameters, measured with assistance of computer-aided 
sperm analysis (CASA), and a set of advanced semen tests. Basic semen analysis (n = 124) was performed according 
to the World Health Organization (WHO) guidelines. Sperm DNA fragmentation and intracellular superoxide (O2

−•) 
levels were assessed by flow cytometry. Seminal plasma thiobarbituric acid reactive substances (TBARS) levels as well 
as superoxide dismutase (SOD) and catalase (CAT) activity were measured by spectrophotometry. Spearman’s rank 
correlation coefficient was used, with significance set at p < 0.05.

Results:  Semen pH correlated negatively with TBARS (p < 0.01). The proportions of total and progressively motile as 
well as rapid spermatozoa correlated positively with CAT activity (p < 0.05). Sperm viability correlated negatively with 
both O2

−• (p < 0.05) and DNA fragmentation (p = 0.01), while normal morphology correlated negatively with O2
−• 

levels (p < 0.05) and positively with CAT activity (p < 0.05). Straight-line velocity (VCL) and average-path velocity (VAP) 
correlated negatively with both O2

−• (p < 0.01) and TBARS (p < 0.01). Amplitude of lateral head displacement (ALH) 
correlated negatively with O2

−• (p < 0.01) and DNA fragmentation (p < 0.01), while its correlation with SOD activity 
was positive (p < 0.05).

Conclusion:  The results obtained from this study support the validity of some CASA parameters as sensitive indica-
tors of changes in sperm oxidative status and DNA integrity. Predicting advanced from conventional parameters 
through the building of linear regression models should be considered for future studies.
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Background
In addition to a detailed medical history and a thor-
ough physical examination, conventional semen analysis 
remains a fundamental procedure performed on routine 
basis during the diagnosis of male infertility [1]. Being 
cost-effective and not technically demanding, semen 

analysis is largely used as a preliminary diagnostic tool 
for the evaluation of male infertility [2]. The analysis 
provides essential information about the basic charac-
teristics of semen, including the volume, sperm concen-
tration, motility, and viability and morphology. However, 
conventional semen analysis, if performed manually, 
is criticized for being subjective, time consuming, and 
prone to inter- and intra-laboratory variations [3]. The 
potential counting and interpretation errors associated 
with the subjective visual assessment of the traditional 
semen analysis have highlighted the absolute necessity 
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for computerized systems designed to automate the anal-
ysis [4]. Indeed, computer-aided sperm analysis (CASA), 
if used proficiently under identical settings, is undeniably 
a powerful approach for the objective assessment of sper-
matozoa [5, 6].

The World Health Organization (WHO) laboratory 
manuals for the examination and processing of human 
semen provide a primary reference guideline for stand-
ardizing semen analysis [7]. Most of the traditional and 
automated semen analysis methods have aligned their 
measurements according to these criteria [8]. The inclu-
sion of normal reference values of semen parameters 
in the WHO manuals has been beneficial in establish-
ing some consistency regarding the basic characteristics 
of the normal ejaculate [9]. However, semen parameter 
values do not necessarily reflect the functional integ-
rity of spermatozoa, and studies have revealed a signifi-
cant overlap in the semen characteristics between fertile 
and infertile men [10]. Consequently, a large proportion 
of men with normal semen analysis results are often 
diagnosed with unexplained infertility as the underly-
ing pathophysiology of sperm functional deficiencies 
remains largely unknown [2]. The recent substantial pro-
gress toward understanding the mechanisms regulating 
sperm function has driven the development of a variety 
of assays for proper evaluation of the functional quality 
of spermatozoa. These assays provide valuable clinical 
insights into multiple aspects of sperm function, includ-
ing DNA integrity as well as oxidative stress and mem-
brane lipid peroxidation. This information can assist the 
clinician to a great extent in treatment-related decision-
making [4]. However, in most cases, these assays are pri-
marily used for research purposes and are not considered 
part of the routine assessment of male infertility. This is 
mainly attributed to the complexity and lack of univer-
sal standardization in addition to the high costs of these 
assays, which adds a further financial burden to a couple 
undergoing fertility investigations [11].

Several studies have investigated the relationship 
between conventional and advanced semen quality mark-
ers; however, results have often been found inconsistent. 
For instance, some studies have revealed that increased 
reactive oxygen species (ROS) production was negatively 
correlated with impaired sperm concentration, motility, 
morphology, and viability [12–14]. Other studies, how-
ever, failed to demonstrate any significant association 
between ROS levels and these parameters [15, 16].

Therefore, there is a need to develop a model that can 
indicate the extent to which changes in each individual 
measurement of the conventional semen analysis, pre-
dominantly measured by CASA, are related to changes in 
the advanced parameters. This study aimed at establish-
ing statistical correlations between conventional semen 

parameters obtained with CASA and a set of advanced 
sperm/semen variables. This will allow for exploring the 
extent to which changes in each individual measurement 
of the conventional semen analysis are related to changes 
in other advanced semen parameters. This could also 
assist in reducing the necessity for advanced sperm func-
tion testing, representing cost-effective measures of the 
overall semen quality for some men undergoing infertility 
assessment.

Methods
Study design
Ethical approval for the study was granted from the 
Health Research Ethics Committee of the Faculty of 
Medicine and Health Sciences at Stellenbosch Univer-
sity (S15/02/045). Semen samples were obtained from 
124 donors between 20 and 30 years of age, participat-
ing in the sperm donor program at the Stellenbosch Uni-
versity Reproductive Research Group. Informed written 
consent was obtained from all donors and the study was 
conducted in accordance with the Declaration of Hel-
sinki [17]. All samples were collected by masturbation in 
a private room adjacent to the laboratory and assessed 
according to the WHO guidelines [7]. Due to sample vol-
ume and technical limitations, not all procedures were 
performed on each individual sample. Consequently, 40 
samples were used for the analysis of superoxide (O2

−•), 
another 40 samples were used for the assessment of DNA 
fragmentation, while 44 samples were used for thiobarbi-
turic acid reactive substances (TBARS), catalase (CAT), 
and superoxide dismutase (SOD) analyses.

Semen analysis
After liquefaction, semen volume and pH were measured. 
Samples were analyzed for sperm concentration, motil-
ity, and kinematic parameters using CASA (Sperm Class 
Analyzer version 5.4—SCA®, Microptic, S.L., Barcelona, 
Spain,) equipped with a Basler A312fc digital color cam-
era (Microptic, S.L., Barcelona, Spain). The assessed 
CASA parameters include sperm concentration, total 
sperm count (TSC), curvilinear velocity (VCL), straight 
line velocity (VSL), average path velocity (VAP), linear-
ity (LIN), straightness (STR), Wobble (WOB), amplitude 
of lateral head displacement (ALH), and beat cross fre-
quency (BCF).

The percentage of viable spermatozoa was determined 
by a dye-exclusion technique using Eosin-Nigrosin stain 
(Sigma-Aldrich, St Louis, MO, USA). From each slide, 
100 spermatozoa were counted by means of the counter 
module of the SCA® morphology system.

Sperm morphology was assessed from smears fixed 
and stained with SpermBlue (SpermBlue®, Microptic, 
S.L., Barcelona, Spain), following the manufacturer’s 
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guidelines [18]. Stained spermatozoa were evaluated by 
computer-aided sperm morphology analysis (CASMA) 
using the SCA® morphology module. The SCA® settings 
were adjusted as described by Maree et al. [19].

Assessment of advanced semen parameters
Sperm DNA fragmentation was assessed by using termi-
nal deoxynucleotidyl transferase-mediated deoxyuridine 
triphosphate (dUTP) nick end-labeling (TUNEL) assay 
with an APO-DIRECT™ kit (BD Biosciences Pharmin-
gen, San Diego, CA, USA) according to the protocol 
described by Sharma et al. [20]. Results are represented 
as percentage of DNA-fragmented spermatozoa.

Intracellular O2
−• production was measured with dihy-

droethidium (DHE) as probe, as previously described 
[21]. Data were reported as median DHE fluorescence 
intensity (MFI).

Seminal plasma levels of TBARS were determined, 
as described by Jentzsch et  al. [22]. Spectrophotomet-
ric methods with a SPECTRA-max PLUS-384 spectro-
photometer and SoftMax® Pro 4.8 software (Molecular 
Devices Corporation, Labotec Industrial Technologies, 
Cape Town, South Africa) were utilized for data acquisi-
tion and analysis. Results were expressed as μmol/L using 
molar extinction coefficient of 1.54 × 105/M/cm at 532 
nm.

CAT activity in seminal plasma was assessed according 
to the method described by Aebi [23]. The H2O2 decom-
position rate was determined spectrophotometrically at 
240 nm (SPECTRAmaxPLUS-384, Molecular Devices, 
San Francisco, CA, USA). Values were reported as units/
mL (U/mL).

For the assessment of SOD activity in seminal plasma, 
the SOD Assay Kit-WST (Sigma-Aldrich, St. Louis, 
MO, USA) was utilized according to the manufacturer’s 
instructions. The absorbance was read on a microplate 
reader at 450 nm. Results were reported as units/mg pro-
tein (U/mg protein).

Statistical analysis
For the determination of correlation between conven-
tional and advanced semen parameters, Spearman’s rank 
correlation coefficient (r) test was used. Statistical analy-
sis was performed using the DellTM StatisticaTM data 
analysis software system, version 13 (StatSoft Inc.). Sta-
tistical significance was set at p < 0.05.

Results
As can be seen from Tables  1 and 2, the means of the 
basic semen parameters (volume, pH, concentration, 
total sperm count (T.S.C.), viability, morphology, motil-
ity, progressive motility) exceeded the lower reference 
limits of the WHO.

Table 1  Correlation analysis between basic and advanced semen parameters

O2
−• superoxide anion, MFI Median DHE fluorescence intensity, TBARS Thiobarbituric acid reactive substances, CAT​ Catalase, SOD Superoxide dismutase, T.S.C. Total 

sperm count

O2
−• (MFI) TBARS (μmol/L) CAT (U/mL) SOD (U/mg) DNA fragmented (%)

Mean ± SEM 155.3 ± 16.82 24.25 ± 2.63 36.16 ± 1.5 4.09 ± 0.22 12.76 ± 0.8

Volume (mL) r −0.05 0.03 −0.05 −0.15 0.14

p 0.75 0.83 0.76 0.32 0.39

Mean ± SEM 2.89 ± 0.21 2.68 ± 0.21 2.68 ± 0.21 68 ± 0.21 2.61 ± 0.21

pH r −0.13 −0.47 −0.11 0.29 −0.03

p 0.43 < 0.01 0.48 0.06 0.84

Mean ± SEM 7.62 ± 0.03 7.67 ± 0.03 7.67 ± 0.03 7.67 ± 0.03 7.7 ± 0.03

Concentration (106/mL) r 0.10 −0.16 0.03 0.17 −0.24

p 0.55 0.31 0.84 0.27 0.13

Mean ± SEM 66.3 ± 6.51 45.7 ± 3.64 45.7 ± 3.64 45.7 ± 3.64 46.81 ± 3.08

T.S.C. (106/ejaculate) r −0.01 −0.02 −0.02 −0.16 0.03

p 0.97 0.92 0.87 0.30 0.87

Mean ± SEM 197.2 ± 28.54 123.0 ± 14.7 123.0 ± 14.7 123.0 ± 14.7 123.6 ± 14.10

Viability (%) r −0.33 0.02 0.01 0.03 −0.43

p 0.04 0.91 0.95 0.86 0.01

Mean ± SEM 68.79 ± 1.34 67.5 ± 1.43 67.5 ± 1.43 67.5 ± 1.43 67.53 ± 1.3

Normal morphology (%) r −0.39 −0.10 0.33 0.23 0.08

p 0.02 0.57 0.04 0.17 0.65

Mean ± SEM 16.39 ± 1.16 18.45 ± 1.06 18.45 ± 1.06 18.45 ± 1.06 17.5 ± 1.03
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Semen volume, T.S.C., and concentration did not cor-
relate significantly with any of the advanced parameters. 
Semen pH only correlated significantly with seminal 
TBARS and showed a negative correlation. The percent-
age of viable spermatozoa correlated significantly and 
negatively with both intracellular O2

−• levels and sperm 
DNA fragmentation. The proportion of morphologically 
normal spermatozoa correlated significantly and nega-
tively with the intracellular O2

−• levels, while its corre-
lation with seminal plasma CAT activity was significant 
and positive (Table 1).

Table  2 displays a significant and positive correlation 
between seminal plasma CAT activity and the propor-
tions of both total and progressively motile spermatozoa, 
whereas the correlation between these motility param-
eters and other advanced parameters was not significant. 
The proportion of rapid spermatozoa correlated signifi-
cantly and negatively with seminal TBARS levels, and 
significantly and positively with CAT activity, though 
its correlation with other advanced parameters did not 
reach statistical significance. The proportions of medium 
and slow spermatozoa correlated significantly and posi-
tively with seminal TBARS levels, while their correlations 
with other advanced parameters were not significant.

As shown in Table  3, VCL correlated significantly 
and negatively with both intracellular O2

−• and seminal 
plasma TBARS levels, while its correlation with seminal 
SOD levels was significant and positive. VSL correlated 
significantly and negatively with the seminal TBARS 
levels and significantly and positively with the percent-
age of DNA fragmentation. VAP correlated significantly 

and negatively with both intracellular O2
−• and seminal 

plasma TBARS levels, whereas its correlation with other 
advanced parameters was not statistically significant. 
Both LIN and STR correlated significantly and positively 
with the proportion of DNA fragmented spermatozoa. 
ALH correlated significantly and negatively with both 
intracellular O2

−• and DNA fragmentation and signifi-
cantly and positively with SOD activity, while the correla-
tion between BCF and seminal plasma TBARS levels was 
significant and negative.

Discussion
This study effectively used multivariate analysis in estab-
lishing a statistical correlation between various conven-
tional and advanced semen parameters, as summarized 
in Fig. 1.

Sperm intracellular O2
−•

In conditions where the intracellular redox homeostasis 
is disturbed, ROS becomes highly reactive and instigates 
peroxidative damage, which adversely affects sperm qual-
ity [24]. In the current study, a significant and negative 
correlation was observed between the proportion of mor-
phologically normal spermatozoa and intracellular O2

−• 
levels. These findings are consistent with previous stud-
ies also showing an inverse association between sperm 
morphology and ROS production [13, 25]. Furthermore, 
substantially higher levels of ROS were reported in tera-
tozoospermic samples compared with normozoospermic 
controls [26]. The link between abnormal sperm mor-
phology and ROS overproduction is generally attributed 

Table 2  Correlation analysis between sperm motility/velocity characteristics and advanced semen parameters

O2
−• superoxide anion, MFI Median DHE fluorescence intensity, TBARS Thiobarbituric acid reactive substances, CAT​ Catalase, SOD Superoxide dismutase

O2
−• (MFI) TBARS (μmol/L) CAT (U/mL) SOD (U/mg) DNA fragmented (%)

Mean ± SEM 155.3 ± 16.82 24.25 ± 2.63 36.16 ± 1.5 4.09 ± 0.22 12.76 ± 0.8

Motility (%) r −0.27 −0.09 0.33 0.05 −0.21

p 0.09 0.56 0.03 0.75 0.19

Mean ± SEM 65.4 ± 2.71 61.6 ± 1.94 61.6 ± 1.94 61.6 ± 1.94 59.09 ± 2.24

Progressive motility (%) r −0.25 −0.30 0.31 0.13 −0.22

p 0.12 0.05 0.04 0.41 0.17

Mean ± SEM 52.0 ± 2.6 47.82 ± 1.85 47.82 ± 1.85 47.82 ± 1.85 45.67 ± 2.02

Rapid (%) r −0.26 −0.31 0.31 0.13 −0.22

p 0.10 0.04 0.04 0.39 0.17

Mean ± SEM 51.15 ± 2.63 46.72 ± 1.86 46.72 ± 1.86 46.72 ± 1.86 44.52 ± 2.03

Medium (%) r 0.11 0.51 −0.15 −0.24 −0.03

p 0.51 < 0.01 0.32 0.12 0.84

Mean ± SEM 6.24 ± 0.35 6.6 ± 0.33 6.6 ± 0.33 6.6 ± 0.33 6.3 ± 0.39

Slow (%) r 0.06 0.38 −0.05 −0.07 0.10

p 0.72 0.01 0.73 0.67 0.54

Mean ± SEM 8.0 ± 0.35 8.25 ± 0.4 8.25 ± 0.4 8.25 ± 0.4 8.22±
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to the presence of excess residual cytoplasm in the mid-
piece due to deficient cytoplasmic extrusion following 
spermiation [27]. Furthermore, nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase 5 (NOX5), a 
novel NADPH oxidase responsible for the generation of 
O2

−• in a calcium-dependant manner, has recently been 
reported to be positively correlated with the incidence of 
sperm abnormal morphology [26]. Abnormal spermato-
zoa are also believed to contribute considerably to ROS 
production [28]. By implication, the relationship between 
increased ROS levels and sperm morphological abnor-
mality appears to be a vicious cycle indicating a cause-
and-effect relationship that warrants further studies.

Intracellular O2
−• levels were also negatively, although 

not significantly, correlated with the proportions of total 
motile, progressively motile, and rapidly motile sperma-
tozoa. Similar findings have been revealed by Pasqualotto 
et al. [29]. However, several other studies have reported 
a significant correlation between elevated levels of semi-
nal ROS and impaired motility [13, 30]. It is important to 
note that these studies have mainly focused on extracel-
lular ROS in seminal plasma, while the sperm intracel-
lular ROS has apparently been disregarded. Interestingly, 
exogenous ROS has been shown to cause more serious 

adverse effects on sperm quality compared to equivalent 
levels of endogenous sperm ROS [31].

A significant negative correlation was also observed 
between sperm intracellular O2

−• and the kinematics 
VCL, VAP, and ALH. This implies that increased levels 
of intracellular O2

−• could initiate alterations in sperm 
swimming patterns, after which sperm quality may fur-
ther deteriorate. The VAP is considered an important 
indicator of the forward swimming speed of sperma-
tozoa; it estimates the time-averaged velocity of the 
sperm head along its average trajectory [32]. The inverse 
relationship between sperm O2

−• levels and VAP may 
demonstrate the possible role of this free radical in con-
straining the actual rate of sperm forward movement 
within the female reproductive tract.

Both VCL and ALH represent the characteristics of the 
sperm head movement, which depends on the pattern 
of the flagellar beating. Increased values of these param-
eters are generally identified to be characteristic signs of 
sperm hyperactivation at the site of fertilization [33]. At 
low concentrations, the role of O2

−• in the initiation of 
sperm hyperactivation has been recognized [34]. How-
ever, the strong negative correlation between O2

−• and 
these kinematic parameters suggests that overproduction 

Table 3  Correlation analysis between sperm kinematics and advanced semen parameters

O2
−• superoxide anion, MFI Median DHE fluorescence intensity, TBARS Thiobarbituric acid reactive substances, CAT​ Catalase, SOD Superoxide dismutase, VCL Straight 

line velocity, VSL Average path velocity, VAP Average path velocity, LIN Linearity, STR Straightness, ALH Lateral head displacement, BCF Beat cross frequency

O2
−• (MFI) TBARS (μmol/L) CAT (U/mL) SOD (U/mg) DNA fragmented (%)

Mean ± SEM 155.3 ± 16.82 24.25 ± 2.63 36.16 ± 1.5 4.09 ± 0.22 12.76 ± 0.8

VCL (μm/s) r −0.46 −0.62 0.14 0.35 −0.09

p < 0.01 < 0.01 0.36 0.02 0.60

Mean ± SEM 83.33 ± 2.35 77.9 ± 1.82 77.9 ± 1.82 77.9 ± 1.82 77.05 ± 2.0

VSL (μm/s) r −0.18 −0.33 0.00 −0.10 0.36

p 0.26 0.03 0.99 0.51 0.02

Mean ± SEM 32.53 ± 1.04 30.73 ± 0.7 30.73 ± 0.7 30.73 ± 0.7 30.75 ± 0.81

VAP (μm/s) r −0.43 −0.60 0.06 0.25 0.15

p < 0.01 < 0.01 0.71 0.11 0.36

Mean ± SEM 53.15 ± 1.3 51.74 ± 0.9 51.74 ± 0.9 51.74 ± 0.9 51.4 ± 1.0

LIN (%) r 0.24 0.01 −0.11 −0.30 0.48

p 0.14 0.97 0.46 0.05 < 0.01

Mean ± SEM 39.52 ± 1.12 40.03 ± 1.0 40.03 ± 1.0 40.03 ± 1.0 40.5 ± 1.13

STR (%) r 0.14 0.03 0.01 −0.25 0.43

p 0.38 0.83 0.97 0.10 < 0.01

Mean ± SEM 61.29 ± 1.3 59.6 ± 1.04 59.6 ± 1.04 59.6 ± 1.04 60.1 ± 1.21

ALH (μm) r −0.49 −0.18 0.09 0.33 −0.42

p < 0.01 0.25 0.56 0.03 < 0.01

Mean ± SEM 2.1 ± 0.07 1.9 ± 0.04 1.9 ± 0.04 1.9 ± 0.04 1.85 ± 0.04

BCF (Hz) r −0.03 −0.56 0.26 0.16 0.20

p 0.84 < 0.01 0.09 0.30 0.22

Mean ± SEM 14.7 ± 0.4 13.7 ± 0.34 13.7 ± 0.34 13.7 ± 0.34 13.71 ± 0.38
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of intracellular O2
−• may contribute to decreased hyper-

activated motility, which is critical to the success of ferti-
lization. Further studies are needed to elucidate whether 
this is an actual cause and effect relationship or just a sta-
tistical correlation.

TBARS
The preservation of seminal plasma pH within its refer-
ence range (7.2–8.2) is essential for the regulation of 
various physiological functions of spermatozoa [35]. 
A significant negative correlation was found between 
TBARS levels and pH in semen. At physiological levels of 
pH in seminal plasma, malondialdehyde (MDA) which is 
a major end-product of lipid peroxidation is present as an 
enolate ion with low reactivity. However, lowering the pH 
causes the formation of highly reactive compound known 
as beta-hydroxyacrolein, which can react with other mol-
ecules in the vicinity and cause a considerable increase in 
lipid peroxidation [36].

Seminal plasma TBARS levels were significantly and 
negatively correlated with the proportion of rapidly 
motile spermatozoa. A similar, though nearly significant, 
trend was observed with regards to the proportions of 
progressive and total motility, whereas the correlation 
between TBARS levels and the proportions of medium 

and slow spermatozoa were significant and positive. 
The negative correlation between lipid peroxidation and 
sperm quality parameters of motility has been reported 
in several studies [37–39]. The sperm tail membrane is 
presumed to contain substantially higher amounts of 
total and individual biologically active unsaturated fatty 
acids [40], which contribute to its fluidity and flexibility 
critical to its movement, but simultaneously increase 
the tail membrane susceptibility to oxidative alterations. 
Therefore, rapid progressive motility is a sensitive param-
eter to lipid peroxidation that could be impaired prior 
to any detectable deterioration in other sperm motion 
characteristics.

This study also found a significant negative correla-
tion between TBARS levels and the percentages of VCL, 
VSL, VAP, and BCF. Similar, but non-significant trends 
were observed with regard to the percentage of ALH. The 
parameters VCL, VSL, and VAP are measures of sperm 
progressive velocity and are revealed to play a vital role in 
sperm competition [41]. They have also been suggested 
as potential reliable indicators of male fertility [42, 43]. 
BCF is one of the useful parameters which contribute 
substantially to the overall sperm linear progression. It 
indicates the rate at which the curvilinear path crosses 
the average path; however, it may vary in value depending 

Fig. 1  Simplified schematic of the correlation between advanced and conventional semen parameters. O2
−• (superoxide), TBARS (thiobarbituric 

acid reactive substances), SOD (superoxide dismutase), CAT (catalase), VCL (curvilinear velocity), VSL (straight-line velocity), VAP (average path 
velocity), LIN (linearity), STR (straightness), ALH (amplitude of lateral head displacement)
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on the VAP setting on the CASA instrument [6]. The sen-
sitivity of these kinematic parameters to the deleterious 
effects of lipid peroxidation appears to be higher than 
that of the motility percentage, which was not correlated 
with TBARS levels in this study.

Antioxidant enzyme activities
Seminal plasma CAT activity was correlated significantly 
and positively with the proportions of total motile, pro-
gressively motile, rapidly motile, and morphologically 
normal spermatozoa, and significantly and negatively 
with the proportion of immotile spermatozoa. Similar but 
non-significant trends were observed for the SOD activ-
ity. These results are in agreement with those reported by 
Khosrowbeygi et  al. [44]. Previous studies have further 
shown a substantially higher seminal plasma CAT activ-
ity in normozoospermic men as compared to men with 
asthenozoospermia [45–47] or asthenoteratozoospermia 
[44]. The observed positive correlations between CAT 
activity and sperm motility and normal morphology indi-
cate the importance of this enzyme in the alleviation of 
ROS-induced oxidative damage, thereby reducing the 
cytotoxicity to spermatozoa.

On the other hand, available literature provides incon-
sistent results about the relationship between SOD activ-
ity and sperm quality. Some studies have revealed that 
increased SOD activity in seminal plasma is correlated 
with a significant improvement in the sperm overall 
motility [47–49]. Other studies have also reported simi-
lar but non-significant results [44, 50, 51]. The current 
study did not find a correlation between SOD activity in 
seminal plasma and sperm motility parameters, while the 
correlations with VCL and ALH were significantly posi-
tive. This suggests that elevated SOD activity in seminal 
plasma might be an indication of the development of 
spontaneous and premature hyperactivated motility of 
spermatozoa in the ejaculate. However, sperm regulation 
is a highly complex process involving multiple variables, 
thus, the specific role of SOD in the control of sperm 
motility remains poorly understood and necessitates fur-
ther research.

DNA fragmentation
A significant negative correlation was also observed 
between the proportion of DNA fragmentation and 
sperm viability. This result is comparable with the pre-
vious findings from Brahem et al. [52]. Furthermore, an 
elevation in sperm DNA fragmentation induced by long-
term in vitro incubation was reported to be accompanied 
by a substantial loss of sperm viability [53]. Similarly, a 
more recent study also demonstrated a strong negative 
correlation between sperm DNA fragmentation and via-
bility in semen samples with DNA fragmentation rates ≥ 

30% [54]. The current data presented confirms the obser-
vations of the abovementioned studies and suggests that 
sperm viability might represent a potential indicator and 
a cost-saving measure for semen quality.

The mechanism responsible for the incidence of 
DNA fragmentation in ejaculated human spermatozoa 
is not fully elucidated. One hypothesis proposes DNA 
breaks within ejaculated spermatozoa to be the result 
of apoptotic DNA cleavage during the early stages of 
spermatogenesis [55]. However, at the stage of DNA 
break down, apoptotic process is irreversible and the 
cells would be eliminated by Sertoli cells prior to ejacu-
lation [56]. Another postulation points to the excessive 
exposure to ROS as being the causative agent for DNA 
fragmentation in ejaculated spermatozoa [57]. Sperm 
DNA fragmentation has previously been shown to cor-
relate significantly and positively with the levels of ROS 
generated by spermatozoa [58]. Despite not being able 
to measure ROS and DNA fragmentation in the same 
samples, the current study showed a significant nega-
tive correlation between sperm intracellular O2

−• levels 
and the proportion of viable spermatozoa, thereby, indi-
rectly implying a relationship between ROS and DNA 
fragmentation.

The current study observed a positive correlation 
between the sperm DNA fragmentation and the kin-
ematic parameters: VCL, LIN, and STR. This shows 
that DNA-fragmented spermatozoa might still have 
the capacity for rapid forward motility. However, these 
spermatozoa might not be able to develop a state of 
hyperactivated motility at the site of fertilization as was 
indicated by the negative correlation observed in this 
study between the proportion of DNA fragmentation and 
ALH.

Several studies have been undertaken to investigate 
the possible correlation between sperm DNA fragmen-
tation and a number of semen characteristics such as 
sperm concentration, motility, and morphology. Not 
all studies, however, have come to the same conclu-
sions. Some studies have revealed poor correlations, as 
was observed in the present study, between the sperm 
DNA integrity and the conventional semen parameters 
of sperm concentration, motility, and morphology [59, 
60]. In contrast, other studies have shown significant 
negative correlations between sperm DNA fragmenta-
tion and many of these semen variables [61, 62]. More 
recently, Boushaba and Belaaoui [63] reported negative 
correlations between sperm DNA fragmentation and 
sperm concentration as well as motility, while no sig-
nificant correlation was found with regards to sperm 
morphology. As stated in a review by Evgeni et al. [64], 
the inconsistencies among different studies concerning 
the correlation between sperm DNA fragmentation and 
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semen characteristics could be ascribed to several fac-
tors. These factors include dissimilarities in the assays 
used to quantify DNA fragmentation, the use of different 
techniques for the assessment of semen quality as well as 
variations in the characteristics of the populations across 
studies.

Conclusion
The correlations observed between conventional and 
advanced semen parameters enhance the applicability 
of conventional semen analysis as a more cost-effective 
and efficient approach for the diagnosis of idiopathic 
and unexplained male infertility. Indeed, various 
CASA motility and kinematic parameters have shown 
to be especially important indicators of sperm DNA 
fragmentation and oxidative stress markers. Continu-
ing along these lines, the predicting of advanced from 
conventional parameters through the building of lin-
ear regression models should be considered for future 
studies. While further and larger studies are needed, 
the results obtained from this study substantiate the 
importance of CASA in bridging the gap between con-
ventional and advanced semen parameters.
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